
Deverywhere: Develop Software Everywhere -

A Template-Based Developing Abstraction

Alex Tilkin

November 2015

FINAL PROJECT

School of Computer Science

Supervisor 1: Prof. Shmuel Tyszberowicz

Supervisor 2: Dr. Yishai Feldman (IBM Research)

i

Preface

This final project in MTA (the Academic College of Tel-Aviv Yafo) is submitted as part of the

study program towards an MSc degree in Computer Science. The research was carried out dur-

ing 2014-2015. The academic supervisor of this work is Prof. Shmuel Tyszberowicz. The idea

for this final project yielded by Dr. Yishai Feldman (IBM Research) who is also a supervisor in

this work. This research is in cooperation with Ari Gam who is an M.Sc. student in Computer

Science at Tel-Aviv University. The readers of this document are assumed to have knowledge in

programming languages, system engineering, and software development tools.

Tel-Aviv, 26-11-2015

Alex Tilkin

ii

Acknowledgment

I would like to thank Prof. Shmuel Tyszberowicz, Dr. Yishai Feldman, and Ari Gam for their great

help during the research.

A.T.

iii

Abstract

In this work we developed an idea of a new approach to programming, where the programmer

may use mobile devices for programming in addition to PCs and laptops. In this research we

related to two major problems: how to present the code on mobile devices, and how the pro-

grammer interacts with the mobile device while s/he programs. Previous works have failed to

address this issue because they concentrated on the dictation of the code word by word instead

of describing what transpires when using natural language. Our approach is to use natural lan-

guage for interaction between the mobile device and the programmer. During the research we

studied programming environments, performed experiments, built concepts for compact rep-

resentation of the code, and constructed a prototype in which one can dictate code in natural

language and it will understand what is meant. This research is important for the development

of programming environments, it may present a solid foundation for future work in this domain

both for students and for researchers. The aim of this final project is to investigate the domain

of programming environments, and to develop a concept of a new generation of programming

environments. The idea is to use mobile devices such as tablets and smart phones as develop-

ment tools, in addition to PCs and laptops that are already used today and to integrate all of

them into one comprehensive solution.

In order to perform such a study, we had to investigate and learn different programming

environments as well as the current state of programming. Secondly, we had to understand

what the obstacles in developing a programming environment on mobile platforms are, and

to provide a solution to every problem. We found that in order to allow programmers to use

mobile platforms as development environments, we have to use voice and touch gestures. In

order to learn how programmers use speech as a gesture while programming, we performed a

set of experiments. Those experiments gave us a sense of the optimum interaction which can

be achieved between a computer and a programmer.

Afterwards, we started to investigate the most dominant and common features that are used

today in programming environments. Based on those features, we designed concepts of com-

pact representation of the code so it could fit according to the sizes of mobile devices. Based on

the concepts of compact representation of the code, we decided to add the possibility of config-

iv

uring the representation of the code so the programmer could read to code in the way it makes

most sense to him or her.

We investigated the fields of natural language processing and programming languages and

built two modules. The first one is a speech to text engine which translates spoken commands to

textual commands. The second one is a module that accepts textual commands, validates and

resolves them. Those two modules are significant to this study because they are keys of success

in this study. They will be used in future work.

This work has been published in an academic article entitled "Deverywhere: Develop Soft-

ware Everywhere".

Based on the research and its results, we are confident that it is possible to develop a full-

scale programming environment that will be used on mobile devices, PCs and laptops. In addi-

tion, the programmer will be able to seamlessly switch devices in order to proceed with his or

her coding.

Contents

Preface . i

Acknowledgment . ii

Abstract . iii

1 Introduction 2

1.1 Background . 3

1.2 Problem Formulation . 4

1.3 Literature that we Used . 4

1.4 Objectives . 5

1.5 Limitations of the Approach . 6

1.6 Approach . 6

1.7 Contribution . 7

1.8 Structure of the Report . 7

2 Experiments 8

2.1 Introduction . 8

2.2 Experiments . 9

2.2.1 Experiment No.1 . 9

2.2.2 Experiment No.2 . 12

2.2.3 Experiment No.3 . 17

2.2.4 Experiment No.4 . 22

2.2.5 Experiment No.5 . 31

2.3 Commands Repository . 36

2.3.1 Administration commands . 37

v

CONTENTS vi

2.3.2 I/O . 37

2.3.3 Navigation . 37

2.3.4 Exit . 39

2.3.5 Expression . 40

2.3.6 Collections . 41

2.3.7 Conditions . 41

2.3.8 Return . 42

2.3.9 Call . 42

2.3.10 Delete . 43

2.3.11 Change/Modify . 43

2.3.12 Inheritance/Implementation . 45

2.3.13 Create . 45

3 Supported Features 49

3.1 Introduction . 49

3.2 List of Features . 50

3.2.1 Programming by Voice (writing) . 50

3.2.2 Navigation by Voice . 50

3.2.3 Editing by Voice . 50

3.2.4 Compact View Mode . 50

3.2.5 Refactoring . 51

3.2.6 Object Identification . 51

3.2.7 Temporal Abstraction . 52

3.2.8 Details on Touch . 52

3.2.9 Changing the View Mode . 53

3.2.10 Fish Eye . 53

3.2.11 Quick Fix . 53

3.2.12 Dictation User Experience and Error Correction 55

3.2.13 Undo, Redo . 55

3.2.14 Templates and Concise commands . 55

CONTENTS vii

3.2.15 Save the Program as Regular Source Code . 56

3.2.16 Support multiple source files for analyzing . 56

3.2.17 Search . 56

3.2.18 Source control integration . 56

3.2.19 Stand Alone System . 56

3.2.20 Multi Platform . 56

3.2.21 License . 57

3.2.22 Show Time Complexity of Methods . 57

3.2.23 Command Variability . 57

3.2.24 Programming Languages Support . 57

3.2.25 Recommendations System . 57

3.2.26 Duplication Handling . 58

3.2.27 String Construction by Voice . 58

3.2.28 Integration with Future Technologies . 58

3.2.29 Auto Identifier Names Generation . 58

3.2.30 Extension Methods . 59

3.2.31 Multiple Views . 59

3.2.32 Breadcrumbs (Presence in Classes) . 59

3.2.33 Getters and Setters Identification . 60

3.2.34 Omit Declaration Lines . 60

3.2.35 Operator Overloading . 60

3.2.36 Lambda expression . 61

3.2.37 Type Inference . 61

3.2.38 Source Code on Demand . 61

3.2.39 Collaboration . 61

3.2.40 Native representation . 61

3.2.41 Inter-procedural Flow . 62

3.2.42 Annotations . 62

CONTENTS viii

4 Compact Representation 63

4.1 Introduction . 63

4.2 Operators . 64

4.2.1 Basic Operators . 64

4.3 Statement Terminators . 65

4.4 Mathematical Expressions . 66

4.5 Boolean expressions . 66

4.5.1 Range . 66

4.6 Scopes . 66

4.6.1 Scope Brackets . 66

4.6.2 Frame . 67

4.6.3 Indentation . 67

4.6.4 Line Break . 68

4.6.5 Fill . 69

4.7 Accessibilities . 69

4.8 Implementation and Inheritance . 70

4.9 Types . 70

4.9.1 Style . 70

4.9.2 Text Value . 70

4.9.3 Omit Types . 70

4.10 Fields . 70

4.11 Methods . 71

4.11.1 Omit Returned Type . 71

4.11.2 Omit Types of Formal Parameters . 71

4.11.3 Omit Parentheses . 71

4.11.4 Constructors . 72

4.12 Control Blocks . 72

4.12.1 If Statements . 73

4.12.2 Switch . 73

4.13 Temporal Abstraction . 74

CONTENTS ix

4.14 Loops . 78

4.14.1 Temporal Abstraction . 78

4.14.2 Imperative Representation . 81

4.15 System Methods . 84

4.16 Layouts . 85

4.16.1 Tiles . 85

4.16.2 Breadcrumbs . 86

4.16.3 Inter-procedural Flow . 87

4.17 Example . 88

5 Configuration of Representation 91

5.1 Introduction . 91

5.2 Configuration scope . 92

5.2.1 Configuration Main Settings . 92

5.2.2 Features and Configurations . 92

6 Programming in Natural Language 96

6.1 Introduction . 96

6.2 Configuration . 96

6.3 Natural Language Processing . 97

6.3.1 Speech To Text Engines . 97

6.3.2 Context Free Grammar . 98

6.3.3 Dictation Parser . 98

6.3.4 Parser . 101

6.3.5 Lexer . 109

6.3.6 Grammar Testing . 116

6.4 Implementation . 132

7 A Prototype Tool 133

7.1 Introduction . 133

7.2 Speech to Text . 133

7.2.1 Google Speech V2 Server . 133

CONTENTS 1

7.2.2 Speech to Text Library . 136

7.2.3 Testing the Module . 136

7.3 BNF Parser . 139

8 Summary 141

A Publications and Talks 143

A.1 Advanced Software Tools Seminar in The Blavatnik School of Computer Science in

Tel-Aviv University . 143

A.2 MobileSoft 2015 Conference . 143

B Acronyms 149

Bibliography 150

Chapter 1

Introduction

In the early days of computing, programmers worked in offices. Personal computers allowed

programmers to work at home as well. Laptops further expanded the working environment,

and we often see people programming in coffee shops, terminals, trains, and airplanes. With

ubiquitous mobile devices becoming increasingly popular, there is an opportunity to allow pro-

grammers to work in even more restrictive environments. While such small devices are unlikely

to become the preferred working environment, they can be useful in circumstances where ur-

gent action is required and other equipment is unavailable.

This scenario, however, presents two major obstacles: first, the lack of a convenient keyboard

and second, the small screen space - which limits the amount of code that can be shown simul-

taneously. Some have advocated the creation of new programming languages for mobile plat-

forms, but the cost of adopting a new language, with its related tools and infrastructure, seems

to be too great for the benefit of occasionally programming on a mobile device. This applies to

the development of mobile and non-mobile applications alike; professional programmers who

develop mobile applications still prefer to use large screens and physical keyboards. Instead,

we focus on easy ways to use existing languages, such as Java, on mobile devices. Our proposed

solution, called Deverywhere, addresses both challenges by using templates to make voice and

touch input very effective for programming, and for showing much more code in a limited space.

Templates, used in context, allow voice input for creating, editing, and navigating; and allow a

compact representation of programs that makes maximum use of the given screen space. Both

uses require a high degree of configuration, since programmers have different preferences re-

2

CHAPTER 1. INTRODUCTION 3

garding the way they want to voice and see programs. The underlying representation is always

the original language, so that each programmer can see a tailored view while seamlessly collab-

orating on the same code with others.

These ideas are also relevant to programming on laptop and desktop systems, for people

with disabilities such as repetitive-stress injuries (RSI) that limit keyboard usage, and partial

vision loss, which requires the use of very large fonts. For some programmers, no screen is large

enough, and so we expect that these programmers will use the compact representation of code

even on large displays.

1.1 Background

In-order to create such an IDE we need to investigate several areas. The first one is, what are the

features that we need in such a developing environment? The second one is, how do program-

mers tend to describe the code that they want to insert? And the third one is, how can we create

a new representation of the code without harming the understanding of it? We need to investi-

gate all those areas in order to design a new environment for developing with a new approach

that uses voice and touch gestures.

Several studies have been published that have related to the problem of dictating code by

voice. Some of the studies deal more with research and some deal essentially with application.

Susan L. Graham and Andrew Begel from Berkeley University worked on a project named SPEED

[1]. In their study they developed an add-on that integrates into Eclipse and allows the program-

mer to insert lines of Java code using speech. Sihan Li, Tao Xie (North Carolina State University)

and Nikolai Tillman (Microsoft Research) worked on TouchDevelop [10]. This project provides

a simple and clear environment which allows the developer to develop application directly on

mobile devices using touch gesture. Dennis Strein and Hans Kratz developed appfour [4], an

IDE that runs on mobile devices. The user can compile applications directly on the mobile de-

vice and run them.

However, none of those works provides a comfortable solution for IDE on mobile devices

that is fully integrable with stationary computers. None of them addresses the issue of lack of

keyboards and small screen together. Our work addresses these issues by providing a comfort-

CHAPTER 1. INTRODUCTION 4

able IDE which uses voice, touch and compact representation of the code.

Dictation systems exist today e.g. [16], but their use for programming is limited. Lacking

any domain knowledge, they require most of the program to be dictated word by word, which

is impractical. By building an understanding of program syntax and some semantics into the

dictation tool, it is possible to make this process much more efficient.

1.2 Problem Formulation

Programming on mobile devices presents two major obstacles: the lack of a physical keyboard,

and the small screen space, which limits the amount of code that can be shown simultaneously.

This work addresses both challenges, and offers a method to enable programming on mobile

and other devices with limited input and output capabilities. The method uses templates to

make voice and touch input very effective for programming, and showing much more code in

a limited space. These ideas are also relevant to programming on laptop and desktop systems,

for people with disabilities such as repetitive-stress injuries (RSI) that limit keyboard usage, and

partial vision loss, which requires the use of very large fonts.

In this work we concentrate on several targets: design of a new representation of the code

so it will fit on mobile screens and will be readable as well; Creation of a set of templates that

will allow the programmer to program by dictating the code; and allow the user to configure the

representation of the code.

1.3 Literature that we Used

In the following list we present the main books and articles that relate to problems that are

related to our area of research:

• In our research we develop an EBNF language that parses texts which represents com-

mands. In order to integrate this EBNF language we use Antr 4. In order to understand

how to use this tool efficiently and smarter we need to use the book of Terence Par [14].

• Andrew [1, Chap. 2] studied a field that deals with programmers ran into problems of

CHAPTER 1. INTRODUCTION 5

orally expressing their thoughts when they had to dictate a program. This information is

very important to us and consequently we designed our experiments based on it.

• It is shown in Andrew [1, Chap. 3] how spoken Java is processed. They developed several

tools for analyzing the semantics and syntax of spoken Java. We are interested in integrat-

ing the Harmonia tool [8] in our system. [8] provides all the information about how to use

the Harmonia tool and how to integrate it in programming tools.

• The basic concepts and ideas of our work are allowing programmers to use mobile de-

vices for programming, provide compact representation of the code on mobile devices

so programmers could read it with ease, and create a dictation system that the program-

mer could dictate code with natural language. All those are described in Feldman [6, Pro-

gramming By Voice and Touch] which is basis for our research. Basically, this paper is the

starting point for this research.

1.4 Objectives

The main objectives are the following:

1. Design the representation of the code in compact mode.

2. Design a concept for configuring language features. It needs to be comfortable and intu-

itive for the user.

3. Perform a series of experiments with different volunteers. The purposes of those experi-

ments are to understand how programmers pronounce the code that they want to insert.

What are the most negligible actions that programmers take?

4. Based on the experiments, define a set of templates that will be used as a tool to identify

programmers’ commands and transform them into lines of code.

5. Search and investigate existing programming features. The features that we look for are

those which are related to the Java and generally to programming. All those features have

the potential to be integrated into the system.

CHAPTER 1. INTRODUCTION 6

6. Build a prototype that proves that developing code on mobile devices is possible.

7. Provide a solid foundation for future works based on this research.

1.5 Limitations of the Approach

The only limitation of this study is we cannot implement full solution currently. A full imple-

mentation is out of the scope of the final project.

1.6 Approach

In this section we provide the scientific approach for each objective (the objectives and the ap-

proaches are correlated by the numbers of the times in the list):

1. We will study the most common and major domains of programming features that exist in

Java. Afterward we will collect enough programming features covering enough domains

and will study other languages to determine how those features are represented there. We

will search in related works for new ideas for representations and will have discussions

about new those ideas. After all those processes are completed we will design a new com-

pact representation.

2. We need to study the most common programming features and collect them into cate-

gories. We need to design methods to configure programming features. Thereafter we will

have before us the programming features of both groups which will allow us to determine

how the of members from the second group are related to elements from the first group.

3. We will build a series of experiments which will represent a different style of program-

ming. For example, we will utilize object oriented, and algorithmic programming styles.

There will be two programmers, the typist and the speaker. The speaker will request from

the typist to create a program that is already written in Java. The speaker will dictate the

program and the typist will type it. After all experiments are accomplished we will com-

pare the source and the reference (dictated program). Furthermore, we will analyze the

differences between the desired and the actual results.

CHAPTER 1. INTRODUCTION 7

4. We will extract all commands that have been dictated during the experiments. We will

group them into sets, for each set we will create a template that represents this group.

5. Schedule a series of team meetings. During every meeting the members of the group will

suggest programming features that can be integrated into the system. Every feature will

be discussed. All features that have been chosen will be saved in an archive.

6. We will build a text file that contains a set of commands. Every command is a simulation

of a dictation that the programmer pronounced. We will build a set of rules that know how

to handle the commands.

1.7 Contribution

The main contribution is to allow programmers to develop from everywhere, this will cause in-

crease developers productivity. We will design a convenient way of programs dictation and a

new design of compact representation. This project will contribute a flexible IDE for PCs, lap-

tops, mobile devices, and development environments. Additional and very important contribu-

tion is that project will help people with disabilities.

1.8 Structure of the Report

• Experiments

• Supported Features

• Compact Representation

• Configuration of Representation

• Programming in Natural Language

• Prototype

• Summary

• Publications

Chapter 2

Experiments

2.1 Introduction

This chapter provides information about experiments that have been performed. The main goal

of those experiments is to understand how we pronounce the code that we want to insert. The

secondary goal is to create a repository of commands that will be grouped into categories. Based

on the repository we will create templates that will help to analyze the pronounced commands.

Every experiment consisted of two active participants and two passive participants (passive

participants are listeners). One of the active participants was the speaker and the other one

was the typist. In every experiment the typist gave to the speaker a programming task where he

needed to implement a program.

The speaker had to dictate a program and the typist had to type exactly what the speaker

dictated. The speaker had to dictate lines of code in such way that the typist could understand

what he means, but without excessive detail. For example, if the speaker had to dictate the code

in Figure 2.1. He would dictate it as follows: "For each element in elements call to to string".

The typist needed to follow the dictations of the speaker and to type the code to the text

editor (all four participants could see the screen). The typist typed the code in Java. Every one

of the participants could participate and provide suggestions for pronouncing the commands.

The typist could delete, edit and navigate in the code with no limitations. There were no time

constraints and no limitations on the amount of lines. All experiments were recorded.

After all experiments were performed, we analyzed them and extracted only the relevant

8

CHAPTER 2. EXPERIMENTS 9

lines that represent commands. For each experiment we created a table that contains two

columns. The left column contains the commands that were dictated and the right column

represents the code that was typed.

Remark:The commands that were inserted into the tables are filtered from irrelevant vowels.

For example, the commands create class ummm look up (where ummm is the vowel) has been

converted to create class look up

foreach(Element element in elements){

element.toString();

}

Figure 2.1: A simple for each loop where every item in elements activates it’s toString method

2.2 Experiments

2.2.1 Experiment No.1

• Date: 28/Apr/2014.

• Speaker: Alex Tilkin.

• Typist: Ari Gam.

• Description: Implement a small program that contains an interface called Lookup. This

interface has one method called find. It returns Object and receives String. a class called

SimpleLookup that implements Lookup. It has two private members: Names that is an

array of Strings, and Values that is an array of Objects. The implemented method find

iterates over all elements in Names and compares every one of them with Name. If it finds

such element it returns the matched element. In addition a method called processValues

that receives: String[] names, and Lookup table. The program was presented to the speaker

during all of the experiment.

CHAPTER 2. EXPERIMENTS 10

Table 2.1 represents the order of the commands that were dictated (top to bottom). Figure 2.2

represents the code that was presented to the speaker. Figure 2.3 represents the results of the

dictation.

interface Lookup {

Object find(String name);

}

void processValues(String[] names, Lookup table) {

for (int i = 0; i != names.length; i++) {

Object value = table.find(names[i]);

if (value != null)

processValue(names[i], value);

}

}

class SimpleLookup implements Lookup {

private String[] Names;

private Object[] Values;

public Object find(String name) {

for (int i = 0; i < Names.length; i++) {

if (Names[i].equals(name))

return Values[i];

}

return null;

}

}

Figure 2.2: The original Java code that was presented to the speaker during experiment No. 1

CHAPTER 2. EXPERIMENTS 11

interface Lookup{

Object find(String name){

}

}

void processValues(String[] names, Lookup table){

for(int i = 0; i < names.Length(); i++){

Object value = table.find(names[i]);

if(value != null){

processValues(names[i], value);

}

}

}

class SimpleLookup implements Lookup{

private Strings[] names;

private Object[] values;

public Object find(String name){

for (int i = 0; i < name.Length(); i++){

if (names[i].equals(name)){

return values[i];

}

}

return null;

}

}

Figure 2.3: The result of dictating the code in Figure 2.2

CHAPTER 2. EXPERIMENTS 12

The speaker said The typer typed

Create class LookUp +Class LookUp

Create a method processValues that returns void and ac-

cepts array of strings names and lookupTable

+processValues(names, table)

Create a loop from zero to the length of names for 0 ≤ i <names.length

Create value type of object accepts table.find, accepts

names at i’s index

value ← table.find(names[i])

If value different from null then value 6= null ?

call to processValue that accepts name at i’s index and

value

processValue(name[i], value)

We done with processValues

Create a class SimpleLookUp implements LookUp +Class SimpleLookUP : LookUp

Delete the last row

Create array of strings call it names and make it private -[] names

Create values type of array of object and make it private -[] values

Create a method that returns an object call it find accepts

name type of string and make it public

+find(name)

Create a loop from zero to the length of names for 0 ≤ i <names.length

If names at i’s index period equals accept name then names[i].equals(name) ?

Return values at i’s index ←- values[i]

Exit the for loop

Return null null

Table 2.1: This table presents the major commands that have been dictated during experiment

No.1

2.2.2 Experiment No.2

• Date: 28/Apr/2014.

CHAPTER 2. EXPERIMENTS 13

• Speaker: Alex Tilkin.

• Typist: Ari Gam.

• Description: Implement a method called getInterpolatedValue. It receives two integers

and returns double. The method needs to return the interpolated value based on certain

conditions. The program was presented to the speaker during all the experiment.

Table 2.2 represents the order of the commands that were dictated (top to bottom). Figure 2.5

represents the code that was presented to the speaker. Figure 2.5 represents the results of the

dictation.

CHAPTER 2. EXPERIMENTS 14

public final double getInterpolatedValue(double x, double y){

if(useBicubic){

return getBicubicInterpolatedPixel(x, y, this);

}

if(x < 0.0 || x >= width-1.0 || y < 0.0 || y >= height-1.0){

if(x < -1.0 || x >= width || y < -1.0 || y >= height){

return 0.0;

}

else{

return getInterpolatedEdgeValue(x, y);

}

}

int xBase = (int)x;

int yBase = (int)y;

double xFraction = x - xBase;

if(xFraction < 0.0){

xFraction = 0.0;

}

double lowerLeft = getPixelValue(xBase, yBase);

double lowerRight = getPixelValue(xBase + 1, yBase);

double upperAverage = upperLeft + xFraction * (upperRight - upperLeft);

}

Figure 2.4: The code that was presented to the speaker during experiment No.2

CHAPTER 2. EXPERIMENTS 15

public final double getInterpolatedValue(double x, double y){

if(useBicubic){

return getBicubicInterpolatedPixel(x, y, this);

}

if(x < 0.0 || x >= width-1.0 || y < 0.0 || y >= height-1.0){

if(x < -1.0 || x >= width || y < -1.0 || y >= height){

return 0.0;

}

else{

return getInterpolatedEdgeValue(x, y);

}

}

int xBase = (int)x;

int yBase = (int)y;

double xFraction = x - xBase;

if(xFraction < 0.0){

xFraction = 0.0;

}

double lowerLeft = getPixelValue(xBase, yBase);

double lowerRight = getPixelValue(xBase + 1, yBase);

double upperAverage = upperLeft + xFraction * (upperRight - upperLeft);

}

Figure 2.5: The result of dictating the code in Figure 2.3

CHAPTER 2. EXPERIMENTS 16

The speaker said The typer typed

Create method getInterpolatedValue that accepts argu-

ments x and y

+getInterpolatedValue(x, y)

if useBicubic useByCubiq?

Change y to i, change q to c, Change capital C to small c useBicubic?

return a call to getInterpulatedPixel that accepts argu-

ments x, y and this

←- getBicubicInterpulatedPixel(x,

y, this)

We are done with the if

if x is less than zero dot zero or x is greater or equal to

width minus one dot zero or y is less than zero dot zero or

y is greater or equal to height minus one dot zero then

x < 0.0 || x ≥ width - 1.0 || y < 0.0 || y

≥ height - 1.0 ?

if x is less than minus one dot zero or x is greater or equal

to width or y is less than minus one dot zero or y is greater

or equal to height then return zero dot zero

x < -1.0 || x ≥ width || y < -1.0 || y ≥
height ? ←- 0.0

else return a call to getInterpulatedEdgeValue that ac-

cepts parameters x and y

: ←- getInterpulatedEdgeValue(x,

y)

We are done with the outer if

Assign x to xBase xBase ← x

Assign y to yBase yBase ← y

Subtract xBase from x and assign it to xFraction xFraction ←- x - xBase

If xFraction is less than zero period zero then assign zero

period zero to xFraction

xFraction < 0.0 ? xFraction ← 0.0

We are done with the if

Table 2.2: This table presents the major commands that were dictated during experiment No.2

CHAPTER 2. EXPERIMENTS 17

The speaker said The typist typed

Assign the returned value from getPixelValue that accepts

parameters xBase and yBase to lowerLeft

lowerLeft ← getPixelValue(xBase,

yBase)

Assign the returned value from getPixelValue that accepts

first parameter xBase plus one and second parameter

yBase to lowerRight

lowerRight ← getPixelValue(xBase

+ 1, yBase)

Assign to upperAverage the calculation of upperLeft plus

xFraction times open parenthesis upperRight minus up-

perLeft close parenthesis

upperAverage = upperLeft + xFrac-

tion * (upperRight - upperLeft)

return the calculation of lowerAverage plus yFraction

times open parenthesis upperAverage minus lowerAver-

age

lowerAverage + yFraction * (upper-

Average - lowerAverage)

Table 2.3: Processing Table 2.2. This table presents the major commands that were dictated

during experiment No.2

2.2.3 Experiment No.3

Part A

• Date: 12/May/2014.

• Speaker: Ari Gam.

• Typist: Alex Tilkin.

• Description: Implement the Bubble Sort algorithem . The speaker was asked to imple-

ment the Bubble Sort algorithm without any assistance. The algorithm had to be imple-

mented in Java. No source code presented to the speaker.

Table 2.4 represents the order of the commands that were dictated (top to bottom). Figure 2.6

represents the result of the dictation by the speaker in part A.

CHAPTER 2. EXPERIMENTS 18

class BubbleSort{

public void do(){

for(int i = 0; i < data.length - 1; i++){

for(int j = 0; j < i; j++){

if(data[i] > data[j]){

int temp = data[j];

data[j] = data[i];

data[i] = temp;

}

}

}

}

private int[] data;

public BubbleSort(int[] init){

data = new int[init.length];

for(int i = 0; i < init.length; i++){

data[i] = init[i];

}

}

}

Figure 2.6: The result of the diction of the Bubble Sort algorithm

Part B

• Date: 28/Apr/2014.

• Speaker: Ari Gam.

• Typist: Alex Tilkin.

CHAPTER 2. EXPERIMENTS 19

• Description: After the speaker completed the implementation of the Bubble Sort algo-

rithm he was asked to improve its time complexity by adding an additional condition. No

source code was presented to the speaker.

Table 2.4 represents the order of the commands that were dictated (top to bottom). Figure 2.7

represents the result of the dictation by the speaker in part B.

CHAPTER 2. EXPERIMENTS 20

class BubbleSort{

public void do(){

for(int i = 0; i < data.length - 1; i++){

boolean done = true;

for(int j = 0; j < i; j++){

if(data[i] > data[j]){

int temp = data[j];

data[j] = data[i];

data[i] = temp;

done = false;

}

}

if(done){

break;

}

}

}

private int[] data;

public BubbleSort(int[] init){

data = new int[init.length];

for(int i = 0; i < init.length; i++){

data[i] = init[i];

}

}

}

Figure 2.7: The result after the additional condition was added to the Bubble Sort algorithm

CHAPTER 2. EXPERIMENTS 21

The speaker said The typist typed

Create class bubble sort +Class BubbleSort

Public void do with no arguments +Do

Create array of ints call it data and make it private -[] data

Create constructor that receives an array of ints and name

it init

+BubbleSort([] init)

Copy init to data data = init.clone

Go to Do method

Create a loop from zero to the length of data minus one for 0 ≤ i <data.length - 1

Create an inner loop from zero to i for 0 ≤ j <i

If the i element of data bigger than the j element of data

then switch between them

data[i] >data[j] ?

temp ← data[i]

data[i] ← data[j]

data[j] ← temp

Here starts part B

Go to the beginning of Do

Create a boolean variable done initialized to false done ← false

Add to the exit condition of outer loop not done for 0 ≤ i <data.length - 1 & done

undo for 0 ≤ i <data.length - 1

Move the statement boolean done initialized to false to

the first line of the outer loop

Change the value from false to true done ← true

Go to the end of the if

Initialize done with false done ← false

Table 2.4: This table presents the major commands that were dictated during the experiment

No.3

CHAPTER 2. EXPERIMENTS 22

2.2.4 Experiment No.4

• Date: 19/May/2014.

• Speaker: Alex Tilkin.

• Typist: Yishai Feldman.

• Description: A program that simulates TV controller was presented to the speaker. The

program contains the following interfaces: Command, and ElectronicDevice and the fol-

lowing classes: TurnOff, TurnOn, VolumeUp, VolumeDown, TV, and DeviceButton. the

classes TurnOff, TurnOn, VolumeUp and VolumeDown implements Command. The class

TV implements ElectronicDevice. The whole application is designed based on the Com-

mand design pattern. During the whole experiment the code was presented to the speaker.

Figure 2.8 represents the Command interface. Figure 2.9 represents the VolumeDown class that

implements the Command interface. Figure 2.10 represents the VolumeUp class that imple-

ments the Command interface. Figure 2.11 represents the TurnOn class that implements the

Command interface. Figure 2.12 represents the TurnOff class that implements the Command

interface. Figure 2.13 represents the ElectronicDevice interface. Figure 2.14 represents the TV

class that implements the ElectronicDevice interface. Figure 2.15 is the represents the Device-

Button class. This class contains the main method.

The following tables represent the order of the major commands that were dictated (top to

bottom) during experiment No.4: Table 2.5, Table 2.6, Table 2.7, Table 2.8.

Remark:In this experiment we present each class only once and not source and dictation result.

This is because the source and the dictation results are identical.

public interface Command {

void execute();

}

Figure 2.8: The Command interface

CHAPTER 2. EXPERIMENTS 23

public class VolumeDown implements Command {

private TV tv;

public VolumeDown(TV tv) {

this.tv = tv;

}

@Override

public void execute() {

tv.volumeDown();

}

}

Figure 2.9: The VolumeDown class that implements the Command interface

public class VolumeUp implements Command {

private TV tv;

public VolumeUp(TV tv) {

this.tv = tv;

}

@Override

public void execute() {

tv.volumeUp();

}

}

Figure 2.10: The VolumeUp class that implements the Command interface

CHAPTER 2. EXPERIMENTS 24

public class TurnOn implements Command {

private ElectronicDevice electronicDevice;

public TurnOn(ElectronicDevice electronicDevice) {

this.electronicDevice = electronicDevice;

}

@Override

public void execute() {

electronicDevice.on();

}

}

Figure 2.11: The TurnOn class that implements the Command interface

public class TurnOff implements Command {

private ElectronicDevice electronicDevice;

public TurnOff(ElectronicDevice electronicDevice) {

this.electronicDevice = electronicDevice;

}

@Override

public void execute() {

electronicDevice.off();

}

}

Figure 2.12: The TurnOff class that implements the Command interface

CHAPTER 2. EXPERIMENTS 25

public interface ElectronicDevice {

void on();

void off();

void volumeUp();

void volumeDown();

}

Figure 2.13: The ElectronicDevice interface

CHAPTER 2. EXPERIMENTS 26

public class TV implements ElectronicDevice {

private int volume;

@Override

public void on() {

System.out.println("The TV is on");

}

@Override

public void off() {

System.out.println("The TV is off");

}

@Override

public void volumeUp() {

volume++;

System.out.println("The volume is now " + volume);

}

@Override

public void volumeDown() {

volume--;

System.out.println("The volume is now " + volume);

}

}

Figure 2.14: The TV class that implements the ElectronicDevice interface

CHAPTER 2. EXPERIMENTS 27

public class DeviceButton {

private Command command;

public DeviceButton(Command command) {

this.command = command;

}

public void press() {

command.execute();

}

public static void main(String[] args) {

ElectronicDevice tv = new TV();

Command turnOffCommand = new TurnOff(tv);

Command turnOnCommand = new TurnOn(tv);

DeviceButton deviceButtonOn = new DeviceButton(turnOnCommand);

DeviceButton deviceButtonOff = new DeviceButton(turnOffCommand);

deviceButtonOff.press();

deviceButtonOn.press();

}

}

Figure 2.15: The DeviceButton class that contains the main method

CHAPTER 2. EXPERIMENTS 28

The speaker said The typer typed

Create interface ElectronicDevice +interface ElectronicDevice

Create method on +on

Create method off +off

Create method volumeUp +volumeUp

Create method volumeDown +volumeDown

Create class TvRemoteControl +Class TvRemoteControl

Without RemoteControl +Class Tv

That implements ElectronicDevice +Class : ElectronicDevice

Go to on

Print the TV is on Print "The TV is on"

Print the TV is off

Print the TV is off Print "The TV is off"

Create local field volume -volume

Go to volumeUp

Do volume plus plus volume++

Print the volume is now and concatenate volume Print "The volume is now" + vol-

ume

Add space after now "The volume is now " + volume

Go to volumeDown

Do volume minus minus volume–

Print the volume is now space concatenate volume Print "The volume is now " + vol-

ume

Create interface Command +interface Command

Create method execute +execute

Create class TurnTVOn implements Command +class TurnTvOn : Command

Table 2.5: This table presents the major commands that have been dictated during experiment

No.4

CHAPTER 2. EXPERIMENTS 29

The speaker said The typer typed

Create constructor that accepts TV +TurnTvOn(tv)

Assign tv to field tv this.tv ← tv

Go to execute

Create class VolumeUp implements Command +class volumeUp : Command

Create constructor that accepts TV +volumeUp(tv)

Assign tv to field tv this.tv ← tv

Go to execute

TV period volumeUp tv.volumeUp

Create class VolumeDown implements Command +Class VolumeDown : Command

Create constructor that accepts TV +volumeDown(tv)

Assign tv to field tv this.tv ← tv

Go to execute

TV period volumeDown tv.volumeDown

Create class DeviceButton +Class DeviceButton

Create constructor that accepts command +deviceButton(command)

Assign command to field command this.command ← command

Create method press +press

Command period execute command.execute

The programmer detected mistakes

Rename TurnTVOn to TurnOn +Class TurnOn : Command

Change constructor’s parameter type to ElectronicDevice +turnOn(electronicDevice)

Change the type of the field tv to ElectronicDevice +ElectronicDevice tv

Rename tv to ElectronicDevice +ElectronicDevice electronicDe-

vice

Rename TurnTvOff to TurnOff +TurnOff : Command

Table 2.6: Processing Table 2.5. This table presents the major commands that were dictated

during experiment No.4

CHAPTER 2. EXPERIMENTS 30

The speaker said The typer typed

Change constructor’s parameter type to ElectronicDevice +turnOff(electronicDevice)

Change the type of the field tv to ElectronicDevice +ElectronicDevice tv

Rename tv to ElectronicDevice +ElectronicDevice electronicDe-

vice

Go to volumeUp

Change constructor’s parameter type to ElectronicDevice +volumeUp(electronicDevice)

Change the type of the field tv to ElectronicDevice +ElectronicDevice tv

Rename tv to ElectronicDevice +ElectronicDevice electronicDe-

vice

Go to volumeDown

Change constructor’s parameter type to ElectronicDevice +volumeDown(electronicDevice)

Change the type of the field tv to ElectronicDevice +ElectronicDevice tv

Rename tv to ElectronicDevice +ElectronicDevice electronicDe-

vice

Create main +main([]args)

Create ElectronicDevice type of TV +main([]args)

Create Command type of TurnOff that receives tv and

name it turnOffCommand

turnOffCommand ← TurnOff(tv)

Create Command turnOnCommand type of TurnOn and

intialize it with TV

turnOnCommand ← TurnOn(tv)

Create DeviceButton that accepts turnOnCommand and

assign it to deviceButtonOn

deviceButtonOn ← DeviceBut-

ton(turnOnCommand)

Table 2.7: Processing Table 2.6. This table presents the major commands that were dictated

during experiment No.4

CHAPTER 2. EXPERIMENTS 31

The speaker said The typer typed

Create new DeviceButton, name it deviecButtonOff and

initialize it with turnOffCommand

deviceButtoff ← DeviceBut-

ton(turnOffCommand)

deviecButtonOff period press deviceButtoff.press

deviecButtonOn period press deviceButton.press

Save

Run

Table 2.8: Processing Table 2.7. This table presents the major commands that were dictated

during experiment No.4

2.2.5 Experiment No.5

• Date: 03/07/2014.

• Speaker: Perry Shalom.

• Typist: Alex Tilkin.

• Description: In this experiment the typist was asked to implement a program that builds

a car. The program had to be designed based on the Builder design pattern. The program

had one main class Car It had to contain three private fields type of String: wheels, engine,

and body. A private constructor that accepts all three parameters that initialize the fields.

If one of the parameter is a null or empty string, the constructor should return and not ini-

tialize any one of the fields. The Car class had to contain a private static class CarBuilder,

it had to contain three private fields type of String: wheels, engine, and body. It had to con-

tain a method named buildCar that checks if all three fields are initialized and return a

new instance of Car class. If one of the fields is not initialized then the method will return

null. A main method needs to build a car by using the CarBuilder class. No source code

was presented to the speaker.

Figure 2.16 represents the dictation result of experiment No.5. Figure 2.17 represents the com-

CHAPTER 2. EXPERIMENTS 32

pact representation of Figure 2.16. Table 2.9 and Table 2.10 represents the major commands that

were taken during experiments No.5.

CHAPTER 2. EXPERIMENTS 33

public class Car{

private String _wheels;

private String _engine;

private String _body;

private Car(String wheels, String engine, String body){

if(body == null || engine == null || wheels == null){

return;

}

_wheels = wheels;

_engine = engine;

_body = body;

}

public static class CarBuilder{

String Body;

String Wheels;

String Engine;

public Car BuildCar(){

if(Body != null && Wheels != null && Engine != null){

return new Car(Wheels, Engine, Body);

}

return null;

}

}

public static void main(String[] args){

Car.CarBuilder carBuilder = new CarBuilder();

carBuilder.Engine = "honda";

carBuilder.Wheels = "4";

carBuilder.Body = "private";

Car car;

car = carBuilder.BuildCar();

}

}

Figure 2.16: The result of experiment No.5

CHAPTER 2. EXPERIMENTS 34

+Class Car

-string _wheels

-string _engine

-string _body

-Car(body, engine, wheels)

_body ← body

_engine ← engine

_wheels ← wheels

+static Class CarBuilder

+string _body

+string _wheels

+string _engine

+Car BuildCar()

body 6= null ∧ engine 6= null ∧ wheels 6= null ?

←- new Car(body, engine, wheels)

←- null

+static Main(args[])

carBuilder ← new CarBuilder()

carBuilder.engine ← "honda"

carBuilder.wheels ← "4"

carBuilder.body ← "private"

car ← CarBuilder.BuildCar

Figure 2.17: The result of experiment No.5 in compact representation

CHAPTER 2. EXPERIMENTS 35

The speaker said The typer typed

Create interface ElectronicDevice +interface ElectronicDevice

Create class car +Class Car

Create wheels type of string and make it private -string _wheels

Create engine type of string and make it private -string _engine

Create body type of string make it private -string _body

Create static inner class CarBuilder +Class CarBuilder

Create method CreateCar that returns Car +Car CreateCar

Change CreateCar to BuildCar +Car BuildCar

Create body type of string make it public +string body

Create wheels type of string and make it public +string wheels

Create engine type of string and make it public +string engine

Go to BuildCar

If wheels and body and engine are not empty strings then wheels 6= null ∧ body 6= null ∧ en-

gine 6= null ?

Return to Car

Create a constructor that receives its three fields and ini-

tializes them

+Car(body, engine, wheels)

_body ← body

_engine ← engine

_wheels ← wheels

go to the the beginning of the constructor

If body equals null or engine equals null or wheels equals

null then return

body = null ∨ wheels = null ∨ en-

gine = null ? ←-

Make the constructor of Car private -Car

Go to the If of BuildCar in CarBuilder

return a new instance of car with the fields body, engine

and wheels

←- new Car(body, engine, wheels)

Exit the If,

Table 2.9: This table presents the major commands that were dictated during experiment No.5

CHAPTER 2. EXPERIMENTS 36

The speaker said The typist typed

return null ←- null

Create Main inside Car main

change the method to static +Car BuildCar

Undo +Car BuildCar

Go to the beginning of Main

Create an instance of CarBuilder carBuilder ← new CarBuilder

Initialize engine of carBuilder with honda carBuilder.engine ← "honda"

Initialize wheels of carBuilder the string four carBuilder.wheels ← "4"

Initialize body of carBuilder the string private carBuilder.body ← "private"

Create identifier type of car car

Call to BuildCar of CarBuilder and put the returned value

into car

car ← CarBuilder.BuildCar

Table 2.10: Proceeding Table 2.9. This table presents the major commands that were dictated

during experiment No.5

2.3 Commands Repository

The following lists present commands that were recorded during the experiments (see 2.2). It is

important to note that the commands were extracted from the recordings manually and filtered

to make the process of organization more easy. For example, random vowels, long pauses and

"off the record discussions" were removed.

The commands were organized by categories. Each category represents a common action

that was repeated during the Experiments. Under the categories you will find sub-categories

that make the category more specific in relation to the language feature to which they relate.

The phrases are grouped so they will make a pattern. Below some of the groups you may find

a template that represents the group. We could not find a pattern for every group, but for those

we could it helped us to build the CFG language for the BNF parser. Based on those patterns we

CHAPTER 2. EXPERIMENTS 37

create a set of BNF rules which is discussed in subsection 6.3.3 and implemented in section 7.3.

By using the BNF rules the system will resolve the textual commands that the user dictates and

transforms them to data that the system will be able to handle.

2.3.1 Administration commands

• SAVE

• RUN

2.3.2 I/O

• Print The TV is on

• Print The TV is off

PRINT string

• Print The volume is now concatenate volume

PRINT [string CONCATENATE languageFeature]+

2.3.3 Navigation

Method

• Go to on

• Go to off

• Go to volumeUp

• Go to volumeDown

• Go to execute

• Go to main

• Go to the beginning of main

CHAPTER 2. EXPERIMENTS 38

• Go to Do method

• Go to the beginning of Do

• Go to BuildCar

GO TO methodName

Loop

• Go to the for loop

• Go to the while loop

• Go to the end of the for loop

• Go to the end of the while loop

• Go to the beginning of do while loop

GO TO LOCATION LOOP TYPE

Control Block

• Go to the end of the if

• Go to the If of BuildCar in CarBuilder

Constructor

• Go to the the beginning of the constructor

GO TO location CONSTRUCTOR

CHAPTER 2. EXPERIMENTS 39

2.3.4 Exit

If

• We are done with the if

• We are done with the outer if

WE ARE DONE WITH THE controlBlock

• Exit the if

EXIT THE controlBlock

• Go outside the If

GO OUTSIDE THE conditionBlcok

Method

• We are done with processValues

WE ARE DONE WITH methodName

• Exit processValues

EXIT methodName

Loop

• Exit the for

• Exit the while

EXIT THE loop

• We are done with the for

• We are done with the while

WE ARE DONE WITH THE loop

CHAPTER 2. EXPERIMENTS 40

Class

• Exit car

EXIT className

2.3.5 Expression

Mathematical Expression

• LowerAverage plus yFraction times open parenthesis upperAverage minus lowerAverage

• UpperLeft plus xFraction times open parenthesis upperRight minus upperLeft close paren-

thesis

• Do volume++

• volume–

Assignment Expression

• Copy init to data

• Done initialized to false

• Initialize engine of carBuilder with the string “honda”

• Initialize wheels of carBuilder the string “4”

• Initialize body of carBuilder the string “4”

• Put the returned value into car

• xBase is assigned x

• yBase is assigned y

• xFraction is assigned x minus xBase

• LowerLeft is assigned a call to getPixelValue that accepts parameters xBase and yBase

CHAPTER 2. EXPERIMENTS 41

• LowerRight is assigned a call to getPixelValue that accepts first parameter xBase plus 1 and

second parameter yBase

• UpperAverage is assigned upperLeft plus xFraction times open parenthesis upperRight

minus upperLeft close parenthesis

• Assign tv to the field tv

• Assign to field command command

• Switch between the “i” and “i+1” elements in data

2.3.6 Collections

Add

• Add new rectangle to shapes

• Add new circle to shapes

• Add new triangle to shapes that accepts 5, 4 and 3

ADD NEW object to collection OPTION

2.3.7 Conditions

• If useBicubic

• If x is less than zero dot zero or x is greater or equal to width minus one dot zero or y is less

than zero dot zero or y is greater or equal to height minus one dot zero then

• If x is less than minus one dot zero or x is greater or equal to width or y is less than minus

one dot zero or y is greater or equal to height then return zero dot zero

• If xFraction is less than zero dot zero then xFraction is assigned zero dot zero

• If value different from null then

• If names at i’s index dot equals accept name then return values at i’s index

CHAPTER 2. EXPERIMENTS 42

• If the i element of data bigger than the j element of data then switch between the “i” and

“i+1” elements in data

• If wheels and body and engine are not empty strings then

• If body = null or engine = null or wheels = null return

IF condition THEN expressions

2.3.8 Return

• Return a call to getInterpulatedPixel that accepts arguments x, y and this

• Return a call to getInterpulatedEdgeValue that accepts parameters x and y

• Return lowerAverage plus yFraction times open parenthesis upperAverage minus lower-

Average

• Return values at i’s index

• Return null

• Return zero dot zero

• return a new instance of car with the fields body, engine and wheels

• ** Return to Car and create a constructor that received its three fields and initializes them

• Return a+b+c

RETURN expression

2.3.9 Call

Method

• Call to getInterpulatedPixel that accepts arguments x, y and this

• Call to getInterpulatedEdgeValue that accepts parameters x and y

CHAPTER 2. EXPERIMENTS 43

• Call processValue that accepts name at i’s index and value

• Call deviceButtonOff dot press

• Call deviceButtonOn dot press

• Call to BuildCar of CarBuilder and put the returned value into car

• TV dot on

• TV dot off

• tv dot volumeUp

• tv dot volumeDown

CALL [to]* methodName [that “that accepts”]+ [parameters arguments]+ [argumentName and]+

identifier dot methodName

2.3.10 Delete

• Delete the last row

DELETE [the]* languageFeature

2.3.11 Change/Modify

• Change y to i, change q to c, Change capital C to small c

• Undo

Class

• (Create class command) Create class TvRemoteControl; (Modifying the command) With-

out RemoteControl

• Rename TurnTVOn to TurnOn

CHAPTER 2. EXPERIMENTS 44

Methods

• Rename TurnTvOff to TurnOff

• Change getPerimeter to return a+b+c

• Change CreateCar to BuildCar

• Change the method to static

Strings

• Add space after now

Constructors

• Change the constructor parameter type to ElectronicDevice

• Change the constructor of Car to private

Identifiers

• Change type of tv to ElectronicDevice

• Rename tv to electronicDevice

• Turn frameWidth and frameHeight to parameters

• Move the statement boolean done initialized to false to the first line of the outer loop

• Change the value from false to true

Loops

• Add to the exit condition of outer loop not done

CHAPTER 2. EXPERIMENTS 45

2.3.12 Inheritance/Implementation

Inheritance

• Inherits from CarBase

• Inherits from Animal

INHERITS [from]* className

Implemintation

• Implements ElectronicDevice

• Implements command

• Implements LookUp

2.3.13 Create

Method

• Create method on

• Create method off

• Create method volumeUp

• Create method volumeDown

• Create method execute

• Create method press

CREATE method methodName

CHAPTER 2. EXPERIMENTS 46

Class

• Create a class LookUp

• Create a class SimpleLookUp implements LookUp

• Create class TvRemoteControl that implements ElectronicDevice

• Create class TurnTVOn implements command

• Create class TurnTvOff implements command

• Create class VolumeUp implements command

• Create class VolumeDown implements command

• Create class DeviceButton

• Create class car

• Create static inner class CarBuilder

• Add a new subclass of ShapeTriangle

• Class bubblesort

Loop

• Create a loop from zero to the length of names

• Create a loop from zero to the length of names in intervals of one

• Create a loop from zero to the length of data minus one

• Create an inner loop from zero to i

Interfaces

• Create interface ElectronicDevice

• Create interface Command

CHAPTER 2. EXPERIMENTS 47

Constructors

• Create constructor that accepts TV

• Create constructor that accepts Command

• Create a constructor that accepts as arguments 3 values of shapes: a, b, c

• Create constructor that receives and array of ints and name it init

• Create a constructor that received its three fields and initializes them

Identifiers

• Create names type of array of strings

• Create array of string call it names and make it private

• Create values type of array of object and make it private

• Create ElectronicDevice of type TV

• Create Command of type TurnOff that accepts tv. Name it turnOffCommand

• Create Command turnOnCommand of type TurnOn. Initialize it with tv

• Create DeviceButton that accepts turnOnCommand. Assign it to deviceButtonOn

• Create new DeviceButton. Name it deviecButtonOff. Initialize it with turnOffCommand

• Create array of ints call it data and make it private

• Create a boolean variable done initialized to false

• Create wheels type of string and make it private

• Create engine type of string and make it private

• Create body type of string make it private

• Create body type of string make it public

CHAPTER 2. EXPERIMENTS 48

• Create wheels type of string and make it public

• Create engine type of string and make it public

• Create value type of object accepts table.find, accepts names at i’s index

• Create local field volume

• Create an instance of CarBuilder

• Create identifier from the type of car

Main

• Create main

• Create Main inside Car

Chapter 3

Supported Features

3.1 Introduction

This chapter discusses the research that has been done to collect information about existing

technologies for the Java language. The purpose of this research is to collect information about

potential technologies that can be integrated into the Deverywhere system and to increase its

functionality. All features have been discussed by the research group whether they have a po-

tential to be integrated or not. The features that are presented in this chapter are only those

which have been chosen to be integrated. Note that this research is flexible and the list of fea-

tures might be changed. This part is important for the research because our architecture and

prototype are designed in such way so all the mentioned features can be integrated into it.

Every feature that is discussed in this chapter is followed by a numerical value which repre-

sents the priority of the feature. The range of the numbers is 1-4 where 1 is the highest priority

and 4 is the lowest priority. The definition of priority for our purposes is how important that

feature is to this research.

The feature that was implemented is Programming by Voice subsection 3.2.1 which is ex-

plained in chapter 7.

49

CHAPTER 3. SUPPORTED FEATURES 50

3.2 List of Features

3.2.1 Programming by Voice (writing)

• Priority: 1

Allow the user to program using his or her voice.

• In case the system stumbles on a case of ambiguity it will present options to the user from

which he could choose the most appropriate solution.

• The system should distinguish between when the user dictates to it or speaks to some-

one (this is a very complicated feature to implement so it might be postponed until later

works).

3.2.2 Navigation by Voice

• Priority: 2

The user could navigate in the code using his or her voice.

3.2.3 Editing by Voice

• Priority: 3

The user could edit the code by using his or her voice.

3.2.4 Compact View Mode

• Priority: 1

Provide an easy method for understanding, comfortable and compact representation for code.

Allow the use of emoticons and other graphical symbols in order to represent language features

such as: classes, methods, and variables.

CHAPTER 3. SUPPORTED FEATURES 51

3.2.5 Refactoring

Enable the user to perform refactoring operations on the code with voice commands. Because

it is complicated to support all refactoring features, we decided to choose several features that

will be supported (prioritized list where the first one has the highest priority).

• Rename Element (Variable, Rename, Field etc.) - Changing the name into a new one that

better reveals its purpose

• Constructor Using Fields - Create constructor by selecting a couple of fields and create a

constructor that receives those fields as a formal variables that initialize the local fields

• Surround with “try-catch” - Surround a chunk of code with “try-catch” statement

• Move Element (Method or Field) - move to a more appropriate Class or source file

• Push Down - Move fields from derived class to the base class

• Pull Up - Move fields from base class to derived class

• Self-Encapsulate Field - force code to access the field with getter and setter methods (should

be hidden) (described in details in the section “Getters and Setters Identification”)

• Change Method Signature

3.2.6 Object Identification

• Priority: 2 (relates to 3.2.2)

This is a core feature that has to be implemented in-order to allow other features such as: navi-

gation, refactoring and any other feature that requires from the user to point to where he wants

to take the action. Below is a list of several features that provides an example where is it needed.

• Refactoring - When a user asks to refactor a certain object he says something like "change

car to truck". In order to change this identifier, first the system needs to identify it and

then start the process of renaming it.

CHAPTER 3. SUPPORTED FEATURES 52

• Navigation in code - In order to allow navigation in code the system needs to identify the

object and its location in order to navigate correctly. For example, one may say “go to a

method drive of car” and the cursor will go to the first line of the method “Drive” in the

class “Car”.

• Code Selection - user may select pieces of code by telling the system start and end points.

For example, "Select the code from line sixteen to line twenty four".

3.2.7 Temporal Abstraction

• Priority: 4

This feature allows the user to speak in high level commands and generate code automatically.

Due to the complexity of implementing the whole feature, we chose to concentrate on the sec-

tion “Sequences as Conventional Interfaces”: Allows the user to speak in loops terminology and

presents the code in mathematical sequences representation.

Remark:"Temporal abstraction is a concise way to express computations that operate on sequences

of data. Compared to regular loops, it allows for greater code reability and modularity, and assists

in execution optimization and parallelization" Ben-Haim [3, Abstract], for more details you can

read the final project in the following link.

• The user will speak in loops terminology and create Java loops.

• Transform Java loops to mathematical sequences.

• Perform well-known algorithms on collections, for example. "Perform Quick Sort on the

collection cars by the field year".

3.2.8 Details on Touch

• Priority: 2

Allow the user to inspect an element in (e.g. a variable) and peek into hidden details (e.g. its

type) without losing orientation.

http://portal.idc.ac.il/en/schools/cs/research/documents/eldan11.pdf

CHAPTER 3. SUPPORTED FEATURES 53

3.2.9 Changing the View Mode

• Priority: 4

Allow a user to change the view mode from compact to explicit and vise versa (explicit means to

show the types and the accessibility of each object).

3.2.10 Fish Eye

• Priority: 3

Improve user orientation by displaying a large part of the program on the screen; less-relevant

lines will be displayed in small font.

3.2.11 Quick Fix

• Priority: 2

This is the same feature as Eclipse has.

• Package Declaration - (need to run in the background). Add missing package declaration

or correct package declaration. Move compilation unit to package that corresponds to the

package declaration.

• Imports - (need to run in the background). Remove unused, unresolvable or non-visible

import. Invoke ’Organize imports’ on problems in imports.

• Types - Create new class, interface, enum, annotation or type variable for references to

types that cannot be resolved. Change visibility for types that are accessed but not visi-

ble. Rename to a similar type for references to types that cannot be resolved. Add import

statement for types that cannot be resolved but exist in the project. Add explicit import

statement for ambiguous type references (to import-on-demands for the same type). If

the type name does not match with the compilation unit name, either rename the type or

rename the compilation unit. Remove unused private types. Add missing type annotation

attributes.

CHAPTER 3. SUPPORTED FEATURES 54

• Constructors - Create new constructor for references to constructors that cannot be re-

solved (this, super or new class creation). Reorder, add or remove arguments for con-

structor references that mismatch parameters. Change method with constructor name to

constructor (remove return type). Change visibility for constructors that are accessed but

not visible. Remove unused private constructor. Create constructor when super call of

the implicit default constructor is undefined, not visible or throws an exception. If type

contains unimplemented methods, change type modifier to ’abstract’ or add the method

to implement.

• Methods - Create new method for references to methods that cannot be resolved. Rename

to a similar method for references to methods that cannot be resolved. Reorder or remove

arguments for method references that mismatch parameters. Correct access (visibility,

static) of referenced methods. Remove unused private methods. Correct return type for

methods that have a missing return type or where the return type does not match the re-

turn statement. Add return statement if missing. For non-abstract methods with no body,

change to ’abstract’ or add body. For an abstract method in a non-abstract type, remove

abstract modifier of the method or make type abstract. For an abstract/native method

with body, remove the abstract or native modifier or remove body. Change method ac-

cess to ’static’ if method is invoked inside a constructor invocation (super, this). Change

method access to default access to avoid emulated method access. Add ’synchronized’

modifier. Override hashCode(). Open the ’Generate hashCode() and equals()’ wizard.

• Fields and variables - Correct access (visibility, static) of referenced fields. Create new

fields, parameters, local variables or constants for references to variables that cannot be

resolved. Rename to a variable with similar name for references that cannot be resolved.

Remove unused private fields. Correct non-static access of static fields. Add ’final’ mod-

ifier to local variables accessed in outer types. Change field access to default access to

avoid emulated method access. Change local variable type to fix a type mismatch. Initial-

ize a variable that has not been initialized. Create getter and setters for invisible or unused

fields. Create loop variable to correct an incomplete enhanced ’for’ loop by adding the

type of the loop variable.

CHAPTER 3. SUPPORTED FEATURES 55

• Exception Handling - Remove unneeded catch block. Remove unneeded exceptions from

a multi-catch clause. Handle uncaught exception by surrounding with try/catch or adding

catch block to a surrounding try block. Handle uncaught exceptions by surrounding with

try/multi-catch or adding exceptions to existing catch clause (1.7 or higher).Handle un-

caught exception by adding a throw declaration to the parent method or by generalizing

an existing throw declaration

3.2.12 Dictation User Experience and Error Correction

• Priority: 1

This feature provides rich user experience for dictation. When the user dictates, the system will

respond not only with textual output but also with suggestions and recommendations for his or

her work. For example, the user said "create for loop", an ambiguity might happen. The system

needs to present to the user relevant options and let him decide what he means. In addition,

just as in Eclipse, the system will mark compilation error in real time.

3.2.13 Undo, Redo

• Priority: 2

Every step that has been taken during the development process can be reverted.

3.2.14 Templates and Concise commands

• Priority: 1

Allow the user to generate code without explicitly pronouncing what needs to be written in the

code, e.g., one can say “Create main inside Car” and the program will generate main method

inside the class Car. Another example can be, while the cursor is inside the Car class, the user

can say “Create a constructor” and the program will generate a constructor with no parameters

(no parameters because the user didn’t say that he wants parameters inside the constructor).

CHAPTER 3. SUPPORTED FEATURES 56

3.2.15 Save the Program as Regular Source Code

• Priority: 1

Open existing source code file.

3.2.16 Support multiple source files for analyzing

• Priority: 3

Refactoring and displaying definitions.

3.2.17 Search

• Priority: 3

Search and display results.

3.2.18 Source control integration

• Priority: 4

Allow source control programs such as GitHub to integrate the system and control your code.

3.2.19 Stand Alone System

• Priority: 4

The system runs on the mobile device, Internet connectivity is needed only if downloading/u-

ploading source code.

3.2.20 Multi Platform

• Priority: 4

The system runs on major mobile operating systems.

CHAPTER 3. SUPPORTED FEATURES 57

3.2.21 License

• Priority: 2

Open source.

3.2.22 Show Time Complexity of Methods

• Priority: 4

Near every method show its time complexity. For example, +print(object) o(n)

3.2.23 Command Variability

• Priority: 3

Sometimes we use different words that have the same meaning (i.e. we say “create a function”

when we actually mean “create a method”). In order to provide a convenient environment for

programming one can hold a thesaurus (e.g. Wordnet) that will include relations between sim-

ilar words. This thesaurus can be modified (add, remove, edit), users should be able to define

their favorite ways of talking. This includes the choice of words to describe templates, features,

and locations. (This may circumvent the need for dictionaries and improve the effectiveness of

the process) Both of these assume a fixed set of templates. Ideally, we would also have the fol-

lowing, perhaps for "super users": Create new templates. This should be as flexible as possible.

3.2.24 Programming Languages Support

• Priority: 4

One may transform the compact code to any language that the transformer will support (e.g.

Java, C#). Relevant for variable name conventions, libraries and for explicit mode.

3.2.25 Recommendations System

• Priority: 4

CHAPTER 3. SUPPORTED FEATURES 58

While we work on our program the apprentice will recommend modifications that will improve

the code (i.e. instead of writing nested code the apprentice will recommend to write an “if”

statement with negative logic and a “return” or “continue” command).

• The recommendations will be presented as a list, the programmer will choose the option

by clicking on it or pronouncing the option number.

3.2.26 Duplication Handling

• Priority: 2

Once we generate an identifier that already exists the application will handle this and rename

the identifier so it will be unique in its scope.

3.2.27 String Construction by Voice

• Priority: 2

String manipulation (e.g. concatenate strings), dictation of characters (e.g. white spaces in

hard-coded strings). Simplest that can work.

3.2.28 Integration with Future Technologies

• Priority: 4

We assume that this technology can be implemented not only on mobile devices but also on

even more futuristic devices, e.g., Google Glass.

3.2.29 Auto Identifier Names Generation

• Priority: 1

The application will generate field names based on class name. Note that in compact represen-

tation the system might not show class name (i.e. Car car will be displayed as car).

CHAPTER 3. SUPPORTED FEATURES 59

3.2.30 Extension Methods

• Priority: 3

A method is added to an object after the original object was compiled. The modified object is

often a class, a prototype or a type. Extension methods are permitted by some object-oriented

programming languages. There is no syntactic difference between calling an extension method

and calling a method declared in the type definition, e.g., one can say "obj.to___", and a list of

methods such as: “toFirstUpper”, "toString" appears.

3.2.31 Multiple Views

• Priority: 2

This feature allows multiple views in a single language, but without modifying the source code.

Davis and Kiczales’ registration-based abstractions enables programmers to switch between dif-

ferent views of their program at the press of a button. It is a convenient technique that allows

the programmer to view the code in different representations so he will understand the code

better and faster. Reference: "How Programming Languages Will Co-evolve with Software Engi-

neering: A Bright Decade Ahead".

3.2.32 Breadcrumbs (Presence in Classes)

• Priority: 3

While we code we create classes and inside them inner classes, methods, properties etc. Some-

times, we might lose our presence due to over encapsulations. In order to solve this issue we

suggest a technique of keeping the header definition of the outer object on top of the screen

while we scroll down in the inner object, e.g.,

Class Human

Class Brain

So, one can always understand the presence in the code in terms of encapsulation.

CHAPTER 3. SUPPORTED FEATURES 60

3.2.33 Getters and Setters Identification

• Priority: 2

Getter/ Setter technique is a very useful technique but one can’t avoid writing explicitly "Set...",

"Get...". We assume that the system needs to identify the pattern of whether it is a getter or a

setter or neither of them, and only print the suffix of the method (ignore the explicit prefix), e.g.,

public SetName(string name)

{_name = name;}

Transformed to,

person.name(name)

One can only call the method Name, and based on the template of the call the systems will un-

derstand if the user wants to call a setter or a getter. Moreover, instead of writing person.name(name)

one can write person.Name ← name

3.2.34 Omit Declaration Lines

• Priority: 1

Line that contains only object declaration is not a necessary bit of information and can be omit-

ted. The proposal is to emit the lines that contain only object declaration without any binding,

e.g., the “Object obj” can be omitted.

3.2.35 Operator Overloading

• Priority: 2

Allow using simple operators instead of using Java libraries for special types, e.g., instead of

writing BigDecimalExtension.operator_plus(x,y) we will write e1+e2 (e1 and e2 are type of big

decimal).

CHAPTER 3. SUPPORTED FEATURES 61

3.2.36 Lambda expression

• Priority: 3

Lambda expressions are a new and important feature included in Java SE 8. They provide a clear

and concise way to represent one method interface using an expression. Lambda expressions

also improve the Collection libraries making it easier to iterate through, filter, and extract data

from a Collection. In addition, new concurrency features improve performance in multi-core

environments.

3.2.37 Type Inference

• Priority: 3

You rarely need to write down type signatures anymore, Types Deduction - The application will

deduce the type of the identifier based on the right side of the statement.

3.2.38 Source Code on Demand

• Priority: 2

One can see the source code by requesting the system to provide the original full source of the

code which the user wants to see.

3.2.39 Collaboration

• Priority: 4

Collaboration with colleagues.

3.2.40 Native representation

• Priority: 3

Allow mathematical expressions in their native representation, as described in Eisenberg [5].

CHAPTER 3. SUPPORTED FEATURES 62

3.2.41 Inter-procedural Flow

• Priority: 3

A technique that helps the user to understand the flow of the program easily. It presents code

blocks connected one to another based on the flow of the program. This technique helps the

user to understand the flow of a program in a much better way. Inter-procedural Flow is based

on the Control Flow Graph (CFG) representation technique, using graph notation, of all paths

that might be traversed through a program during its execution. Inter-procedural Flow has sev-

eral application;we present one that fits our system the most:

• Code Bubbles - This is an application that helps the users to navigate and investigate their

code in a novel approach. Link: http://www.andrewbragdon.com/codebubbles_site.

asp. Additional link which provides a more detailed description is http://cs.brown.

edu/~spr/codebubbles/.

3.2.42 Annotations

• Priority: 2

Allow the user to dictate annotations and display annotations in compact form. Allow using

tools that are based on annotations:

• JML

• Doxygen

http://www.andrewbragdon.com/codebubbles_site.asp
http://www.andrewbragdon.com/codebubbles_site.asp
http://cs.brown.edu/~spr/codebubbles/
http://cs.brown.edu/~spr/codebubbles/

Chapter 4

Compact Representation

4.1 Introduction

Programming languages weren’t designed to be presented on small screens, and therefore when

you try to present programs on small screens it is difficult to read them. Programming languages

are textual, and so require a keyboard In order to edit programs. Standard on-screen keyboards

are inconvenient for texting, let alone for programming. In addition, they require one third of

the screen which makes the small screen even smaller. Our approach is to use conventional

languages such as Java and C++, but allow each programmer to have a tailored compact view

that fits a small screen. We believe that we should support programmers better in doing what

they already know how to do instead of requiring them to learn a new language and tools only

for the purpose of sometimes developing code on mobile phones. Deverywhere is not a new

language; it is a way for each programmer to see the code in the way that makes the most sense

to him or her. Our solution for small screens is a compact representation of the code, which

means focusing on the important information necessary to understand the code.

This chapter discusses how the code can be presented in compact representation. It covers

most of the major domains of programming idioms. Every topic that is discussed in this chapter

is accompanied with an explanation on how it will be configurable by the user and examples of

this are provided by default.

63

CHAPTER 4. COMPACT REPRESENTATION 64

4.2 Operators

This section discusses how atomic operators will be represented. Every symbol may be modified

by the user to any character or icon that s/he wants.

4.2.1 Basic Operators

Table 4.1 provides a set of basic atomic operators that are used in almost every line of code.

CHAPTER 4. COMPACT REPRESENTATION 65

Operator Symbol

Plus +

Minus -

Multiplication *

Division /

Modulo %

Increment ++

Decrement - -

Null ⊥
Shift ¿; À;≫

Relational <; >; ≤; ≥
Equality =; 6=
Bitwise AND &

Bitwise exclusive OR ^

Bitwise inclusive OR |

Logical AND ∧
Logical OR ∨
Ternary ?; :

Assignment ←−; +←−; -←−; *←−; /←−; %←−; &←−; ∧←−; ∨←−; ¿←−; À←−;≫←−

Table 4.1: This table presents operators and symbols that represent them in compact represen-

tation. The symbols are examples for how symbols may be presented. The user may modify

to any representation that s/he wants. This idea is discussed in Chapter 5. Note: ; is used as a

separator between operator symbols.

4.3 Statement Terminators

A statement terminator is used to demarcate the end of an individual statement. For exam-

ple, a statement terminator in Java is ’;’ (semicolon) similarly to C, C++ and other programming

languages. This character doesn’t give any information except where the statement ends. The

CHAPTER 4. COMPACT REPRESENTATION 66

programmer will be able to modify the symbol, s/he may decide if it will be displayed or how it

will look, e.g., result ←− nextNode.data, this is a line of code that is missing a statement termi-

nator symbol. It is also possible to modify the style of the terminators or to use an icon.

4.4 Mathematical Expressions

Mathematical expressions are very common in programming. Sometimes they can be very long

and complex. Therefore, we would like to represent those expressions in a more compact and

native way. We can reduce the length of expressions by changing mathematical expressions

representation to native mathematical representation, e.g., (a −b)/(c −d) ←− a−b
c−d .

4.5 Boolean expressions

This section discusses compact representation of boolean expressions.

4.5.1 Range

In-order to check if an integer is in a range the programmer needsto write 0 <= i &&i < 10. We

propose to write this expression in a natural representation, it will save space and will be easier

for reading. For example, 0 ≤ i < 10.

4.6 Scopes

This section discusses ideas of how the programmer may modify the representation of a scope.

4.6.1 Scope Brackets

The programmer may omit the brackets, then the indentation of the code will denote the scope

of the code. Figure 4.1 presents a small example of code without scope brackets.

CHAPTER 4. COMPACT REPRESENTATION 67

age = 10 ?

adult ←− false

isChild ←− true

Figure 4.1: This is an example of a control block that checks if the age is smaller than 10 then the

false is assigned to the identifier adult and true is assigned to the identifier isChild.

4.6.2 Frame

Figure 4.1 shows that both lines of code are related to the condition because they have the same

indentation. In addition it is possible to frame the scope. It may help the programmer to under-

stand scopes better. 4.2 presents how frame can be used to represent scopes.

Figure 4.2: This is the same code that is presented in Figure 4.1 but a frame is used to represent

a scope.

4.6.3 Indentation

It is also possible to reduce the number of spaces.

Figure 4.3: This is the same code that presented in Figure 4.2 but with a shorter indentation.

The programmer may modify frame’s border color, background color, border width, and bor-

der style.

CHAPTER 4. COMPACT REPRESENTATION 68

4.6.4 Line Break

Line breaks have an influence on the length and the width of the code. Therefore, we would like

to provide several different representations for line breaking.

New Line

Every block of code starts in the same line with the condition key word. Figure 4.4 presents an

example of this style.

if [condition]

then [code_1]

else [code_2]

[code_3]

Figure 4.4: This is a style where every block of code starts in the same line with the condition key

word.

2 Columns

In this representation the then and the else are below the if expression but placed side by side.

Figure 4.5 presents an example of this style.

if [condition]

then [code_1] else [code_2]

[code_1] [code_2]

[code_2]

Figure 4.5: This is a style where the then and the else are below the if expression but placed side

by side.

CHAPTER 4. COMPACT REPRESENTATION 69

4.6.5 Fill

This configuration is almost identical to section 4.6.4 but here if one of the code blocks is longer

than the other it will fill the whole line. Figure 4.6 presents an example of this style.

if [condition]

then [code_1] else [code_2]

[code_1] [code_2]

[code_2]

[code_2]

Figure 4.6: This is a style where if one of the code blocks is longer than the other it will fill the

whole line.

4.7 Accessibilities

The programmer may change the accessibility of classes, and attributes. For example, they can

be presented in the default way, e.g., public, private, protected, internal or they can be presented

with symbols as show in Table 4.2. Also, it is possible to color the symbols: +,−,~,±. More-

over, the programmer may ignore symbols and just color the identifier, e.g., head will stand for

private, iterator will stand for public. It is also possible to use icons instead.

Operator Symbol

Public +

Private -

Protected ±
Internal ~

Table 4.2: This table represents possible representations for accessibilities.

CHAPTER 4. COMPACT REPRESENTATION 70

4.8 Implementation and Inheritance

Instead of using long terms such as: Implements, and inherits, the programmer may change the

text to a more compact representation, e.g., ":" from C++. It is also possible to use text or icon.

4.9 Types

4.9.1 Style

The programmer may modify the style of types, e.g., change int to int.

4.9.2 Text Value

The programmer may modify the textual value of types, e.g., change int to integer.

4.9.3 Omit Types

In-order to save space the programmer may hide types, access level, modifier and show only

identifiers. Since types are hidden the programmer may not understand what the type of the

identifier is. In order to avoid ambiguity we suggest a technique by which when an object is

created the name of the identifier will be the same as the type (but the first letter will be in

lowercase), e.g., private Person _person will be presented person (the Red color denotes that

this is a private field and the italic denotes that it is static).

4.10 Fields

The programmer may configure so that every field that is created will has a specific prefix or

postfix, e.g., if the user configured the prefix to be "_" and asked to create the field car the system

will write "_car". The programmer may configure that all fields will have a certain style, e.g., _car.

CHAPTER 4. COMPACT REPRESENTATION 71

4.11 Methods

This section discusses compact representation of methods.

4.11.1 Omit Returned Type

Returned types is important for compilation but also it provides information to the programmer

what type is returned from methods. This information may be omitted because it does not need

to be presented. Figure 4.7 shows an example of a method in which returned type is hidden.

foo(int a)

return a

Figure 4.7: The returned type (in this case it is int) is omitted.

4.11.2 Omit Types of Formal Parameters

In addition the programmer may omit types of formal parameters of methods. Figure 4.8 shows

the same method that is presented in Figure 4.7 but without the type of its formal parameter.

foo(a)

return a

Figure 4.8: The type of the formal parameter is omitted.

4.11.3 Omit Parentheses

If a method doesn’t have formal parameters it is possible to omit its parentheses. Figure 4.9

shows a method that doesn’t have formal parameters hence its parentheses are omitted.

Figure 4.9: This is method whose parentheses are omitted. The icon of the mobile phone de-

notes that the text "Hello, world!" will be printed to the console.

CHAPTER 4. COMPACT REPRESENTATION 72

4.11.4 Constructors

Constructors are used in every class that is created. There is no need to name the constructors in

the name of the classes, we can use symbols or words that will represent it. This section presents

ideas that might be used as a representation for constructors.

Different Name

Figure 4.10 presents an example of how a constructor may be represented with a different name

other than the name of the class. The programmer may choose any text that make sense to him

or her.

constructor

name ← "name"

Figure 4.10: This is an example of a constructor that uses the word "constructor" as its symbol.

Icon

Instead of using words, the programmer may use an icon that will represent constructors. Fig-

ure 4.11 presents an example where an icon of a crane is used to represent a constructor.

Figure 4.11: This is an example where the programmer chooses to use an icon of a crane to

represent constructors.

4.12 Control Blocks

Condition statements are very common in programming. It is important to allow programmers

to modify their appearance. This section discusses compact representation of control blocks.

CHAPTER 4. COMPACT REPRESENTATION 73

4.12.1 If Statements

Figure 4.12 presents an example how "if" statements may be presented. We use the short version

of if statement. It is also allowed to use the short version without the else part(":").

[Condition] ?

[Code]

:

[Code]

Figure 4.12: Example of If statement

4.12.2 Switch

Similar to "if" statements, the programmer may change the representation of the switch state-

ments. In Figure 4.13 shows an example of switch that is presented in compact representation.

Note: The word default may be modified as well.

name ?

"Danny":

[code]

"Ben":

[code]

"Alex":

[code]

default:

[code]

Figure 4.13: This is an example of a switch statement that uses the "?" character instead of

"switch". In addition, breaks are omitted.

CHAPTER 4. COMPACT REPRESENTATION 74

4.13 Temporal Abstraction

Temporal abstraction is a technique where the programmer instead of writing loops in impera-

tive programming concept, writes the code in functional programming concept. For example,

Figure 4.14 shows an example of code that checks if a collection contains a certain element.

Remark:"Temporal abstraction is a concise way to express computations that operate on sequences

of data. Compared to regular loops, it allows for greater code reability and modularity, and assists

in execution optimization and parallelization" Ben-Haim [3, Abstract], for more details you can

read the final project in the following link.

for(int index = 0; index < collection.length; index++){

if(collection[index] == element)

return true;

}

return false;

Figure 4.14: This is an example of a for loop that iterates over a collection and looks for an ele-

ment by comparing instances.

One can see that the code in Figure 4.14 has an index that runs from zero to the length of the

collection and checks each element to determine if it is the element for which it is looking. If

the element has been identified then True is returned. Figure 4.16 presents the same code but

in temporal abstraction.

return collection.exists(element);

Figure 4.15: This is an example of the loop in Figure 4.14 in temporal abstraction representation.

The method "exists" in Figure 4.15 accepts an element and returns True if it exists in the

collection, or False if it doesn’t. One may notice that the first version is much longer than the

http://portal.idc.ac.il/en/schools/cs/research/documents/eldan11.pdf

CHAPTER 4. COMPACT REPRESENTATION 75

second. This is a very important advantage. This example is simple, while Figure 4.16 presents

a more complicated example of temporal abstraction.

shapes.stream()

.filter(s -> s.getColor() == BLUE)

.forEach(s -> s.setColor(RED));

Figure 4.16: This is an example of code that is written in temporal abstraction technique. The

elements whose color is blue are selected and their color is changed to red.

The following list contains methods that will be supported by this system. The signature of

those methods is such that accepts two arguments, but we should not be confused since those

are "extension methods". The source where we took the list of methods from is http://

download.eclipse.org/modeling/tmf/xtext/javadoc/2.3/org/eclipse/xtext/xbase/lib

/IterableExtensions.html. By clicking on the link you will be navigated to the webpage.

• drop(java.lang.Iterable<T> iterable, int count) - Returns a view on this iterable that pro-

vides all elements except the first count entries.

• elementsEqual(java.lang.Iterable<?> iterable, java.lang.Iterable<?> other) - Determines whether

two iterables contain equal elements in the same order.

• exists(java.lang.Iterable<T> iterable, Functions.Function1<? super T,java.lang.Boolean>

predicate) - Returns true if one or more elements in iterable satisfy the predicate.

• filter(java.lang.Iterable<?> unfiltered, java.lang.Class<T> type) - Returns all instances of

class type in unfiltered.

• filter(java.lang.Iterable<T> unfiltered, Functions.Function1<? super T,java.lang.Boolean>

predicate) - Returns the elements of unfiltered that satisfy a predicate.

• filterNull(java.lang.Iterable<T> unfiltered) - Returns a new iterable filtering any null refer-

ences.

http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.3/org/eclipse/xtext/xbase/lib/IterableExtensions.html

CHAPTER 4. COMPACT REPRESENTATION 76

• findFirst(java.lang.Iterable<T> iterable, Functions.Function1<? super T,java.lang.Boolean>

predicate) - Finds the first element in the given iterable that fulfills the predicate.

• findLast(java.lang.Iterable<T> iterable, Functions.Function1<? super T,java.lang.Boolean>

predicate) - Finds the last element in the given iterable that fulfills the predicate.

• flatten(java.lang.Iterable<? extends java.lang.Iterable<? extends T» inputs) - Combines

multiple iterables into a single iterable.

• fold(java.lang.Iterable<T> iterable, R seed, Functions.Function2<? super R,? super T,? ex-

tends R> function) - Applies the combinator function to all elements of the iterable in turn

and uses seed as the start value.

• forall(java.lang.Iterable<T> iterable, Functions.Function1<? super T,java.lang.Boolean>

predicate) - Returns true if every element in iterable satisfies the predicate.

• forEach(java.lang.Iterable<T> iterable, Procedures.Procedure1<? super T> procedure) -

Applies procedure for each element of the given iterable.

• forEach(java.lang.Iterable<T> iterable, Procedures.Procedure2<? super T,? super java.lang.Integer>

procedure) - Applies procedure for each element of the given iterable

• head(java.lang.Iterable<T> iterable) - Returns the first element in the given iterable or null

if empty.

• isEmpty(java.lang.Iterable<?> iterable) - Determines if the given iterable contains no ele-

ments.

• isNullOrEmpty(java.lang.Iterable<?> iterable) - Determines if the given iterable is null or

contains no elements.

• join(java.lang.Iterable<?> iterable) - Returns the concatenated string representation of the

elements in the given iterable.

• join(java.lang.Iterable<?> iterable, java.lang.CharSequence separator) - Returns the con-

catenated string representation of the elements in the given iterable.

CHAPTER 4. COMPACT REPRESENTATION 77

• join(java.lang.Iterable<T> iterable, java.lang.CharSequence before, java.lang.CharSequence

separator, java.lang.CharSequence after,Functions.Function1<? super T,?

extends java.lang.CharSequence> function) - Returns the concatenated string represen-

tation of the elements in the given iterable.

• join(java.lang.Iterable<T> iterable, java.lang.CharSequence separator, Functions.Function1<?

super T,? extends java.lang.CharSequence> function) - Returns the concatenated string

representation of the elements in the given iterable.

• last(java.lang.Iterable<T> iterable) - Returns the last element in the given iterable or null

if empty.

• map(java.lang.Iterable<T> original, Functions.Function1<? super T,? extends R> transfor-

mation) - Returns an iterable that performs the given transformation for each element of

original when requested.

• operator_plus(java.lang.Iterable<? extends T> a, java.lang.Iterable<? extends T> b) - Con-

catenates two iterables into a single iterable.

• reduce(java.lang.Iterable<? extends T> iterable, Functions.Function2<? super T,? super

T,? extends T> function) - Applies the combinator function to all elements of the iterable

in turn.

• size(java.lang.Iterable<?> iterable) - Returns the number of elements in iterable.

• sort(java.lang.Iterable<T> iterable) - Creates a sorted list that contains the items of the

given iterable.

• sort(java.lang.Iterable<T> iterable, java.util.Comparator<? super T> comparator) - Cre-

ates a sorted list that contains the items of the given iterable.

• sortBy(java.lang.Iterable<T> iterable, Functions.Function1<? super T,C> key) - Creates a

sorted list that contains the items of the given iterable.

• tail(java.lang.Iterable<T> iterable) - Returns a view on this iterable that contains all the

elements except the first.

CHAPTER 4. COMPACT REPRESENTATION 78

• take(java.lang.Iterable<T> iterable, int count) - Returns a view on this iterable that pro-

vides at most the first count entries.

• toInvertedMap(java.lang.Iterable<? extends K> keys, Functions.Function1<? super K,V>

computeValues) - Returns a map for which the Map.values() are computed by the given

function, and each key is an element in the given keys.

• toList(java.lang.Iterable<T> iterable) - Returns a list that contains all the entries of the

given iterable in the same order.

• toMap(java.lang.Iterable<? extends V> values, Functions.Function1<? super V,K> com-

puteKeys) - Returns a map for which the Map.values() are the given elements in the given

order, and each key is the product of invoking a supplied function computeKeys on its

corresponding value.

• toSet(java.lang.Iterable<T> iterable) - Returns a set that contains all the unique entries of

the given iterable in the order of their appearance.

4.14 Loops

This section discusses compact representation of loops. We suggest several representations for

loops, some of them may look like the for loop.

4.14.1 Temporal Abstraction

Temporal Abstraction is a very useful technique when it comes to loops representation. sec-

tion 4.13 describes how Temporal Abstraction works and how does it used in our system. Below

you can find six modes of representation that supported, every mode provided with description

and an example of how the program will look like in this mode. The example that is used is a

program that calculates sum of square roots of all positive elements of a collection. Figure 4.17

shows how code looks like with no temporal abstraction.

CHAPTER 4. COMPACT REPRESENTATION 79

int sum = 0;

for (int i : input) {

if (i > 0)

sum += sqrt(i)

}

Figure 4.17: This is an example of how the program looks like if Temporal Abstraction is disabled.

Figure 4.18 is an example from Java 8 java.util.stream where a sequence of methods called

one-by-one and the returned value of the first method activates the next method. We call this

type of representation Program.

input.stream()

.filter(i → i > 0)

.mapToInt(i → sqrt(i))

.sum()

Figure 4.18: This is an example of how Temporal Abstraction may be used. In this code all the

elements that their value is greater than 0 are selected. Each element is inserted into a map

where it’s value is the key and the value is it’s square. Finally all value are summed. The result of

this code is sum of squares of all elements that their values are greater then 0.

Another representation is a lexical representation. The code is represented by a phrase that

explains what happens in the line of code. We call this representation Paragraph of Text.

Sum the square roots of the positive integers of input

Figure 4.19: This is an example of how line of code may be represented by a phrase. For example,

this phrase explains what happens in Figure 4.18.

Another idea of representing Temporal Abstraction code is by a technique we call Bullets.

Figure 4.20 shows an example of the code in Figure 4.18 where every action that is taken on the

CHAPTER 4. COMPACT REPRESENTATION 80

stream presented in a different bullet. For example, the filtering condition named Filter and the

criteria are positive, which means take only the positive elements.

- Enumerate: input

- Filter: positive?

- Map: sqrt

- Accumulate: +, 0

Figure 4.20: This is an example of the Bullets technique. The original code is presented in Fig-

ure 4.18. Enumerate is the stream that we want to process. Filter is the passing criteria. Map is

the data structure in which each element will be inserted and Accumulate is the action that will

be taken on all the elements in the data structure.

Signal Flow technique is similar to signal-processing concepts. The different parts of the

plan are represented as stages, and the computation is represented as a signal that flows through

the stages. Figure 4.21 shows an example of the code in Figure 4.18 in Signal Flow representa-

tion.

Enumerate → Filter → Map → Accumulate

input positive? sqrt +, 0

Figure 4.21: This is an example of the Signal Flow technique. The original code is presented in

Figure 4.18. The first stage is Enumerate that enumerates the input; the second stage is Filter

that filters the input based on the criteria the third stage is Map that maps the filtered elements;

and the last stage is Accumulate that accumulates the elements.

The last representation technique is Spreadsheet, this is a simple way to represent what the

code does by a small example. The idea is yielded from the concept that some people prefer

to see an example in order to understand what the code does instead of reading it. Figure 4.22

shows an example of how the code in Figure 4.18 may be presented with the Spreadsheet tech-

nique.

CHAPTER 4. COMPACT REPRESENTATION 81

Positive input: 1 7 0 -29 42

sqrt (int): 1 3 6

0-based Sum: 10

Figure 4.22: This is an example of the Spreadsheet represents the code in Figure 4.18. The first

line of is a set of values that may be in a data structure. The second line is the result of the sqrt

function. Note that there are no values below the values 0 and -29, this is because they don’t

fullfill the criteria (only positive elements). The third row is the result of summing the elements

that are left. In that case they are: 1, 3, and 6. When summing them we will get 10.

4.14.2 Imperative Representation

This section discusses imperative representations for loops. Loops are very common, hence

we would like to provide several types of compact representation for them. We call this type

of representation Imperative. In computer science terminologyies, imperative programming

is a programming paradigm that describes computation in terms of statements that change a

program state. We decided to call this compact representation imperative because it reminds

the imperative programming languages such as: C, C++, and Java.

Loop Icon

The first representation that we suggest is called Loop Icon. The idea is to replace the key words

that represent loops with �. By replacing the keywords we save space on one hand but still it

is clear to the reader that this is a loop. Figure 4.23 shows an example of a loop without the for

keyword, Instead� is placed.

�(int i = 0; i < n; i++)

system.out.println(i)

Figure 4.23: This is an example where the for keyword was replaced with�.

CHAPTER 4. COMPACT REPRESENTATION 82

Loop Watermark

This technique is the most compact representation that we came up with that related to loops

representation. We use the background to place the loop symbol, Figure 4.24 shows an example

of a loop that uses the Loop Watermark representation.

Figure 4.24: This is a public method named toString, in middle of the method there is a loop

that runs from 1 to pos, for each iteration it concatenates the value of temp.data with space and

concatenates it with result. The technique that is used in the line i ∈ [1, pos)] is described in

section 4.14.2.

Loop Range Representation

The idea for Loop Range technique was taken from mathematics. For example, i ∈ [1, pos) �

represents that i is between 1 and pos (not included). It is also very convenient to use this form

to iterate over objects in data structures, e.g., a loop over a list of cars may look like this, i tem ∈
car s. The programmer may iterate only on part of the list. For example, in order to iterate over

the first 10 items we will write i tem ∈ car s[0,10]�.

Another way to present loop range is to use the representation that is discussed in subsec-

tion 4.5.1. For example, for 0 ≤ i < 10. This is a loop the iterates from i to 10.

Loop variables

This technique suggests to present the loop variable and on the background a symbol that shows

that this is a loop. For example, Figure 4.23 will be presented like this Figure 4.25.

CHAPTER 4. COMPACT REPRESENTATION 83

Figure 4.25: This is an example how a loop like is shown in Figure 4.23 can be presented in Loop

Variable mode.

Loop Complexity

Sometimes when a programmer is programming and uses others code he might be interested in

the complexity of the code that he uses. Therefore we suggest a representation technique where

the programmer may see the complexity instead of the code itself. the code that is shown in

Figure 4.23 may be presented as shown in Figure 4.26.

Figure 4.26: This is an example of Loop Complexity representation. The complexity of the code

in Figure 4.23 is O(n), therefore it is represented with O(n) and a circulation loops that denotes

that this is a loop.

Loop Signature

This technique allows the programmer to see only the signature of the loop without the code

inside it. For example, the loop

for (int i = begin; i < n; i++)

system.out.println(i)

Will be presented as follows:

for (int i = begin; i < n; i++)

CHAPTER 4. COMPACT REPRESENTATION 84

4.15 System Methods

Our motivation is to provide a compact representation to all system methods. System method

is a method that has been provided by the developers of the language, e.g., System.arraycopy().

Currently it is quite difficult to pinpoint what are going to be the functions that the system will

support but the motivation is to denote that this is part of our scope of the work. Gradually we’ll

add more and more functionality to this section.

Print to Screen (System.out)

Instead of writing long lines, e.g., System.out.println("Hello, World!"), one may show only println

"Hello, World!" or use an icon like this: .

Memory Copy

Java provides methods that allow copying memory from one data structure to another, e.g., Sys-

tem.arraycopy();. This method accepts the source, the target, the initial index of the source, the

initial index of the target, and how many items to copy. We suggest the following representation

a[i : ...]←b[i : j], which provides more compact view of the code, more readable and understand-

able code (note: the ... in the a vector means that the program will use as much as memory as

it needs). In this example the system copies all elements from index i to index j from vector b to

vector a starting from index i.

Strings Utilities

The class StringUtils is a very useful class when it comes to performing operations on strings,

e.g., check if string is empty or null; remove substrings, replace substrings, and split a string.

The problem with commands is they are very long, e.g., StringUtils.isEmpty(name) (name is a

string). Instead we would like to give the option to write this line as follows: name.isEmpty.

CHAPTER 4. COMPACT REPRESENTATION 85

4.16 Layouts

Deverywhere is a system that aims not only for mobile devices but also for personal computers.

Compact representation can also be useful to make larger screens more clear and efficient. This

section discusses ideas of how code may be presented on large screens.

4.16.1 Tiles

If the user would like to review several methods at the same time he may choose this repre-

sentation to see them in a grid. In Figure 4.27 9 methods are displayed simultaneously on the

tablet/computer screen. Each method’s body is displayed in compact form. Figure 4.28 presents

a more clear view of how the methods may be organized.

Figure 4.27: This is an example of Tiles.

CHAPTER 4. COMPACT REPRESENTATION 86

method 1

[compact body]

method 2

[compact body]

method 3

[compact body]

method 4

[compact body]

method 5

[compact body]

method 6

[compact body]

method 7

[compact body]

method 8

[compact body]

method 9

[compact body]

Figure 4.28: This is a more clear view of the methods in Figure 4.27. The methods are organized

in a transparent table.

4.16.2 Breadcrumbs

While we write code we nest methods inside classes; classes inside classes; control blocks inside

methods; control blocks inside control blocks etc. Sometimes, we might lose our orientation

un the code due to over nesting. In-order to solve this issue we suggest a technique where the

nesting hierarchy will be presented to the user at the top of the screen, e.g., we have a class

Human, inside this class we have a class Brain and inside this class we have a method think.

Figure 4.29 presents how code may be presented to the user if currently he is located in the

method think (note: there might be code between the three first rows).

+class Human

+class Brain

+think

[code]

Figure 4.29: This is an example of a method (think) inside the class Brain inside the class Hu-

man. In order not to lose the orientation inside the code, the titles of encapsulating classes are

kept and the code between them is folded. Therefore, while the programmer writes code inside

the method think he knows that he is inside the classes Brain and Human.

CHAPTER 4. COMPACT REPRESENTATION 87

4.16.3 Inter-procedural Flow

A technique that helps the programmer to understand the flow of the program easily. It presents

code blocks connected one to another based on the flow of the program. This technique helps

the programmer to understand the flow a program in a much better way. Inter-procedural Flow

is based on Control Flow Graph (CFG) representation technique, using graph notation, of all

paths that might be traversed through a program during its execution.

Code Bubbles

Developers spend significant time reading and navigating code fragments spread across mul-

tiple locations. The file-based nature of contemporary IDEs makes it prohibitively difficult to

create and maintain a simultaneous view of such fragments. We propose a novel user inter-

face metaphor for code understanding and maintenance based on collections of lightweight,

editable fragments called bubbles, which form concurrently visible working sets.

The essential goal of this feature is to make it easier for developers to see many fragments

of code (or other information) at once without having to navigate back and forth. Each of these

fragments is shown in a bubble.

The following is an example of how will look like compact representation with Code Bubbles.

Figure 4.30 is a class which named Person who has two private fields: name - the name of the

person; partOfTheDay - which indicates which part of the day it is (morning, noon, afternoon,

midnight, night etc.). It has two methods: greetings - receives a name of a person and greets

him; getPartOfTheDay - returns the part of the day.

CHAPTER 4. COMPACT REPRESENTATION 88

Figure 4.30: This is an example of Code Bubbles.

4.17 Example

This is an example of a compact representation of a program that implements a linked list. The

original program was written in Java and is much longer than the one that presented below. We

took part of the original program and converted its representation from Java representation to a

compact representation. Note that we could choose different representation. The example that

provided below is a combination of representation preferences.

The name of the class is LinkedList, you can see it on the light blue stripe on the right side.

In addition you can see that this is a public class because it has a plus near its name. It has an

inner class named Node an it is private. You can see it at the top of the code, we know that it is

private because it has a minus near its name. The Node class has two public attributes: data and

next. LLIterator is a private inner class that has thee private members: nextNode, removeOK, and

posToRemove. below you may see an icon of a crane that represents a constructor. Below you

may find a public method named remove, this method accepts pos. The method has a condition

(if pos equals to 0).If It is equal it will perform the three lines on the green background. If it is not

equal then the code on the red background will work. Note the three circular arrows. The lines

of code that are over those circular arrows are a loop. This program is an example how code may

be presented in compact representation and still be easy to understand.

This is a concept that we are aiming to reach. Note that this is just one example of com-

pact representation. One may configure the representation of the code so it will fit his or her

CHAPTER 4. COMPACT REPRESENTATION 89

preferences.

+
L
in

k
e
d
L
is

t

-
N

o
d
e

+data
+next

-head
-tail
-size

+iterator new LLIterator

 -
L
L
Ite

ra
to

r

-nextNode
-removeOK
-posToRemove

 nextNode head

removeOK false
posToRemove -1

+hasNext
 nextNode ≠ null

 +
n
e
x
t

assert hasNext
result nextNode.data
nextNode nextNode.next
removeOK true
posToRemove++
result

 +
re

m
o
v
e

assert removeOK

removeOK false
LinkedList.this.remove(posToRemove)
posToRemove--

+makeEmpty
 head tail null

size 0
 +

re
m

o
v
e
(p

o
s
)

assert 0 ≤ pos < size P
o
s
=

0

result head.data
head head.next
size = 1 ? tail NULL
 P

o
s
 ≠

 0

temp head

result temp.next.data
temp.next temp.next.next

pos = size – 1 ? tail temp

size--
result

 +
g
e
t(p

o
s
)

assert 0 ≤ pos < size

Pos = size – 1 ?
 result tail.data e

ls
e

temp head

result temp.data

result
 +

in
s
e
rt(p

o
s
,o

b
j)

assert 0 ≤ pos < size

Pos = 0 ?
 addFirst(obj) e

ls
e

Pos = size ?
 add(obj) e

ls
e

temp head

newNode new Node(obj, temp.next)
temp.Next newNode
size++

 +
a
d

d
(o

b
j)

newNode = new Node(obj, NULL)

size = 0 ? head newNode

 else Tail.Next newNode

result
 +

a
d

d
F
irs

t(o
b
j)

assert 0 ≤ pos < size

size = 0 ? add(obj)

e
ls

e

newNode new Node(obj, head)
head newNode
size++

1 ≤ i < pos
 temp temp.next

1 ≤ i < pos
 temp temp.next

1 ≤ i < pos
 temp temp.next

+ toString

Join data with space from head by next

Chapter 5

Configuration of Representation

5.1 Introduction

One goal of this project is to allow the programmer to configure the representation of the code

on various devices. PCs are a much more convenient environment for programming than lap-

tops and particularly more convenient than tablets and mobile devices. We would like to allow

this ability because every programmer prefers to see the code in different representation. As

discussed in Chapter 4 we suggest different styles of compact representation to program id-

ioms. We assume that it would be very convenient for the programmer if s/he could configure

different representations for different environments.

This chapter discusses how programming-idioms representation may be configured. This

is a basic concept that can guide those who will proceed with this research and will decide to

focus on the configuration of the representation of the code. We believe the same configura-

tion techniques may be used for different language features. For example, Access Levels may be

presented as an icon, text, stylized text e.g., private, and may be omitted. Operators may be pre-

sented as an icon, text, or stylized text e.g., +. It is clear that both operators and accessibilities

may be presented by text, stylized text, or as an icon. This conclusion may help those who will

design the configuration of the compact representation of operators and the accessibilities (for

example: private, public).

The motivation is that developers of a configuration system for a programming feature will

be aware of the same configuration techniques may be used for different language features. It

91

CHAPTER 5. CONFIGURATION OF REPRESENTATION 92

will optimize the configuration system and will create a more intuitive experience for the user.

It is important to note that this is a generic idea that can be expanded. Everyone may add

language features, a configuration feature or add configuration features to language features.

In what follows, we use the following terms:

• Configuration Feature - a feature that helps the user to set a configuration for a program-

ming feature, for example, represent a Access Level with an icon.

• Language Feature - a feature in a programming language, for example, loops.

5.2 Configuration scope

5.2.1 Configuration Main Settings

We assume that there are three main modes of configuration of representation: desktop (PCs

and laptops) which provides the most detailed environment that the user needs, since it has a

big screen; tablet - a smaller environment than the previous one, but the screen is big enough to

show details yet fewer; and mobile phones, which is the smallest environment for developing,

thus it provides the most compact representation.

All those configurations come with default settings that meet the requirements of the envi-

ronment. The user may customize the representations so they will fit his or her needs.

5.2.2 Features and Configurations

In order to understand how each programming feature may be represented, chapter 3 and chap-

ter 4 describe the information that was reviewed. This information helped us to divide program-

ming features into groups, e.g., operators. After we have grouped the programming features, we

created groups of configuration features. Each configuration feature represents a technique of

how a programming feature may be represented. Table 5.1 presents the configuration features

that we have grouped and Table 5.2 presents all language features and the configuration fea-

tures that may be used to present them. In order to understand how every programming feature

may be represented one needs to use tables 5.1 and 5.2. For example, let us take the first row

CHAPTER 5. CONFIGURATION OF REPRESENTATION 93

in Table 5.2. The language feature is Operators, it represents Java operators. The referenced

configuration features IDs are: STYLE, ICON, and TEXT, which means it may be represented in

three ways.

CHAPTER 5. CONFIGURATION OF REPRESENTATION 94

ID Configuration Feature

TEMPORAL Temporal Abstraction - Off/ Program/ Paragraph of Text/ Bullets /Signal flow/

Spreadsheet

PLAN Cliche - Replace code with high-level description

STYLE Style - foreground color; background color; size; font; enable/disable bold; en-

able/disable italics, and enable/disable underlined

ICON Icon - an icon that represents programming feature

TEXT Text - a text that represents programming feature

OMIT Omit - Remove syntax features in-order to preserve space

ORDER Order - Modify the order of elements, e.g., put the "if" before or after the condi-

tion

INDENTATION Indentation Depth - Selecting how many spaces, tabs, pixels or percentage (%) of

the line length the indentation will take

FRAME Frame - Use frame as the boundaries of the scope. Also modify frame style. Also

use symbols like "{" that encapsulates the code

NATIVE Native Form - Convert mathematical expressions into native representation style

LAYOUT New Line Break - Select where text is located; non-textual spatial arrangement of

blocks; breadcrumbs

RANGE Range Representation - Select how range will be presented, e.g., i ∈ [1, pos) will

be used for loops

WATERMARK Watermark - Set background image

COMPLEXITY Complexity - Show complexity If it can be computed using Static Analysis

IO I/O - Replace code with just input and output

CONTRIBUTORS Contributors - Replace code with contributor’s name

Table 5.1: Configuration Feature (right column) is a technique to configure a programming fea-

ture. Every configuration feature has a short explanation. The left column is the given ID for

every configuration feature. For example, the ID TEMPORAL represents the Temporal Abstrac-

tion configuration feature.

CHAPTER 5. CONFIGURATION OF REPRESENTATION 95

Language Feature Configuration Features IDs

Operators STYLE, ICON, TEXT

Conditions STYLE, TEXT, ICON, RANGE

Accessibilities STYLE, ICON, TEXT, OMIT

Implementation and Inheritance STYLE, ICON, TEXT

Methods, Constructors STYLE, ICON, TEXT, FRAME, CONTRIBUTORS, PLAN, OMIT,

LAYOUT

Classes LAYOUT, STYLE, TEXT, OMIT

Fields TEXT, STYLE

Control Blocks STYLE, ICON, TEXT, ORDER, INDENTATION , FRAME, LAYOUT

Statement Terminators STYLE, ICON, TEXT, OMIT

Types STYLE, TEXT, OMIT

Delimiters, Operators, Separators STYLE, TEXT, ICON, OMIT

Keywords STYLE, ICON, TEXT, OMIT

Scope FRAME, INDENTATION, TEXT, STYLE, CONTRIBUTORS,

PLAN, LAYOUT

Expressions RANGE, CONTRIBUTORS, NATIVE

Loops STYLE, ICON, TEXT, OMIT, TEMPORAL, COMPLEXITY, IO,

CONTRIBUTORS, PLAN, LAYOUT

Comments OMIT

Table 5.2: The language feature column presents the language features. Configuration Features

IDs are a set of configuration features that may represent a language feature. For example, Op-

erators may be represented with STYLE, ICON, and TEXT.

Chapter 6

Programming in Natural Language

6.1 Introduction

A keyboard is required to edit textual programs. Standard on-screen keyboards are inconvenient

for texting, let alone for programming. In addition, the available possible presentation take

almost one-third of the screen which makes the small screen even smaller. To avoid using the

inconvenient on-screen keyboard or an external device, we suggest to program by voice. Voice

dictation is based on a common set of templates; these templates are individually customizable

so that each developer can use the idioms that are most convenient.

We describe the idea of programming in natural language by writing requirements in order to

bridge the gap between the code that the programmer wants to write and the code that is written

on the screen. We claim that natural language can serve as the main tool for programming. We

do not claim that it is the only tool, the programmer may use other gestures such as touch, on-

screen keyboard, or external devices when needed.

6.2 Configuration

We suggest that every programmer will dictate in the most convenient way. Every one of us has

a different way of describing things that we wants to say. it is the same with code dictation.

For example, the following Java loop: for(int i = 0; i < n; i++). We could dictate it word by

word: "for, open parenthesis, int, space" etc. This is inconvenient and cumbersome. Instead,

96

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 97

we like to forget about the syntax and just describe what is needed. One way to say it is: "for i

from zero to n". Another programmer may prefer to say "repeat n times" to describe the same

loop.

we do not just dictate a program from its start to its end; we also need to edit existing code

and navigate to specific places in existing code. Navigation depends on the context of what is

shown on the screen and on the surrounding code. For example, if the screen contains only one

loop, one can say "Go to the loop" or I could say "Rename the index of the first loop to j" to

navigate to the first loop on the screen and change its index variable. This demonstrates that

templates used for dictation have named parts, and these parts can be referred to when issuing

editing or navigation commands.

6.3 Natural Language Processing

In order to process dictation, we suggest a two-phase process: converting speech to text and

understanding the context of the text. We use a speech to text engine for the speech conversion

and a context free grammar to understand the context.

6.3.1 Speech To Text Engines

Several speech-to-text engines can be used: Nuance Dragon Nuance [13] is a software devel-

oper kit (SDK) used by developers and integrators to add speech recognition capabilities into

in-house and commercial applications or workflow applications. This toolkit, which enables

everything from free-text dictation to command and control functionality, can be deployed as

part of a server or client-based solution. Kaldi Povey et al. [15] is a toolkit for speech recognition

written in C++ and licensed under the Apache License v2.0. Google Speech Server V2 Mey [11] is

an online free speech-to-text engine which runs on a server, used primarily by researchers. We

decided to employ Google Speech Server V2 because it is free and easy to use. There are many

more speech-to-text engines, but we decided to concentrate on the most well-known.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 98

6.3.2 Context Free Grammar

A context-free grammar (CFG) is a tuple G = (T, N ,S,R), where T is the finite set of terminals

of the language, N is the set of non-terminals that represent phrases in a sentence, S ∈ N is the

start variable used to represent a full sentence in the language. R is the set of production rules

of the form N → (N
⋃

T)∗.

Extended Backus Naur Form

EBNF is a notation for formally describing syntax for writing in a language. The meta-language

is based on a suggestion by Wirth [18] that is based on the Backus-Naur Form and that contains

the most common extensions, i.e:

• Terminal symbols of the language are quoted so that any character, including one used in

EBNF, can be defined as a terminal symbol of the language being defined.

• [] indicate optional symbols.

• { } indicate repetition.

• Each rule has an explicit final character so that there is never any ambiguity about where

a rule ends.

• Brackets group items together. It is an obvious convenience to use (and) in their ordinary

mathematical sense.

6.3.3 Dictation Parser

We use EBNF to create a set of rules that will validate commands that the programmer dictates.

This set of rules can be extended easily by every user to understand EBNF. We use IEEE IEC EBNF

[9] as our main reference to learn how to use EBNF. In [12, pages 51-86] Michal Gordon and

David Harel claim that formal structured natural language requirements can serve as the means

and the end to programming the behavior of reactive system using fully executable languages

such as live sequence charts (LSC). We adopt this approach and use it to create a set of rules to

process user dictation.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 99

Grammar Construction

We now show how our grammar translates controlled natural language. Since we allow a CFG,

we can increment the grammar with additional rules that allow various ways of generating simi-

lar constructs. We can thus increase the set of accepted specifications by augmenting the gram-

mar. However, ambiguity may grow as the grammar grows which would require the user to

explicitly disambiguate his or her intentions in too many cases for the process to be friendly. We

shall describe how basic commands such as: creation, navigation, and modification are parsed.

The Dictation Parser tries to build a parse tree for every dictation that it receives. A valid dicta-

tion is one for which the Diction Parser succeeded to create a parse tree. A number of advanced

ideas are not yet supported in the current implementation. Nevertheless, the current grammar

allows implementing fully executable systems, and has been tested, among other examples, on

the LinkList Example, and on the Command Pattern Example, Section 6.3.6.

The set of rules is divided into four main layers in the Parser layer: Top, Categories, Forms of

Expressions, and Common. The Top layer contains rules that have access to all categories. The

Categories layer contains sub-sections that is divided into different categories. For example,

the Creation sub-section contains all rules that deal with creation. The Common layer knows

nothing about any category, it contains all the necessary information for all actions. The Forms

of Expressions layer contains all all possible forms of expressing any command. For example,

there are several options to pronounce that you want to return something from a method, you

may say: "that returns", "returns", "return" and more. The Top layer and the Categories layer

have access to the Common layer and to Forms of Expressions layers. The Common layer has an

access to the Forms of expressions layer. Figure 6.3 shows how rules are divided into layers and

sub-categories. Note that this division has no effect on the action of rules. Its function is only to

understand the set of rules better.

We now shall explain every sub-category inside the Categories layer. Creation contains all

rules that parse any creation dictation. For example, "Create a new class". Navigation contains

all rules that parse any navigation dictation. For example, "Go to class person". Modification

contains all rules that parse any modification dictation.

We now discuss two dictations that have the same meaning but are expressed differently. It

is important to Deverywhere to allow programmers to dictate code in their preferred way. Let’s

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 100

assume that the programmer created a class Car and now he wants to create an inner class

Wheel. One way to say it is "create a static public class named wheel inside class car". Figure 6.1

presents the parse tree that is generated for this dictation. This dictation will lead to creating a

new static class called Wheel inside a class that is called Car.

Figure 6.1: The parse tree for the sentence "create a static public class named wheel inside class

car".

Another way to say it is "create an inner class wheel". In this case, the class that will be created

won’t be static and the cursor of the IDE shall be placed inside class Car, otherwise the class

Wheel won’t be created inside class Car. Figure 6.2 presents the parse tree that is generated for

this dictation. This dictation will lead to creating a new class called Wheel inside a class that is

called Car.

Figure 6.2: The parse tree for the sentence "create an inner class wheel".

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 101

Figure 6.3: This is the architecture of the Dictation Parser rules

6.3.4 Parser

This section describes the parser of the Dictation Parser module. All layers are divided into

tables; every table groups the commands of the layer.

Top Layer

Table 6.1 represents the commands of the Top layer.

Rule Description

command: creationCommand | navigation-

Command | selectionCommand | modifica-

tionCommand | deletionCommand | invoca-

tionCommand;

This is the main command

Table 6.1: This table represents the commands of the Top layer.

Creation Layer

Table 6.2 and Table 6.3 represents the commands of the Creation Layer. This layer handles all

creation commands that the user dictates.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 102

Rule Description

creationCommand: creationVerb? (AN |

A)? (createField | createMethod | createCon-

structor | createDataType | createBlock | cre-

ateLoop) elementLocation?;

The main command of the Creation

Layer

creationVerb: CREATE | NEW | OPEN; Creation verb

createField: fieldModifier? fieldRef; Creates a field

createMethod: modifier? (METHOD | FUNC-

TION) namedElement ((THAT_ACCEPTS |

WITH) parametersList)? (returnsVars Ele-

ment)?;

Creates a method

createConstructor: modifier? CONSTRUC-

TOR ((THAT_ACCEPTS | WITH) parameter-

sList)?;

Creates a constructor

createDataType: modifier? (INNER)?

dataType namedElement ((implementsVars |

extendsVars) Element)?;

Creates a data type

createBlock: BLOCK | createBlockStatement; Creates a block

Table 6.2: This table represents the commands of the Creation layer.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 103

Rule Description

createBlockStatement: localVariableDeclara-

tion | statement;

Creates a block of stattements

createLoop: createForEachLoop | create-

WhileLoop | createDoWhileLoop | createFor-

Loop;

Creates a loop

createForEachLoop: FOR_EACH Element IN

Element command?;

Creates a foreach loop

createWhileLoop: WHILE expression DO?

command?;

Creates a while loop

createDoWhileLoop: DO command WHILE

expression;

Creates a do while loop

createForLoop: FOR Element (FROM (num-

ber | elementsElement))? (TO (number | ele-

mentsElement))? command?;

Creates a for loop

Table 6.3: This table represents the commands of the Creation layer.

Navigation Layer

Table 6.4 represents the commands of the Navigation Layer. This layer handles all navigation

commands that the user dictates.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 104

Rule Description

navigationCommand: navigationVerb

(dataType | FIELD | METHOD)? Element |

exitCommand;

Creates navigation command

navigationVerb: GO_TO |

WE_ARE_DONE_WITH;

Navigation verb

exitCommand: (EXIT | QUIT) (elementsEle-

ment | (dataType | FIELD | METHOD)? Ele-

ment);

Creates exit command

exit: WE_ARE_DONE_WITH | EXIT; Variations of exit

Table 6.4: This table represents the commands of the Navigation layer.

Modification Layer

Table 6.5 represents the commands of the Modification Layer. This layer handles all modifica-

tion commands that the user dictates.

Rule Description

modificationCommand: modifyAccessLevel; Creates modification command

modifyAccessLevel: modificationVerb ac-

cessLevel;

Modifies the access level. For example,

changes from private to public

modificationVerb: MAKE_IT | CHANGE_IT; Modification verb

Table 6.5: This table represents the commands of the Modification layer.

Selection Layer

Table 6.6 represents the commands of the Selection Layer. This layer handles all selection com-

mands that the user dictates.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 105

Rule Description

selectionCommand: (NUMBER | OPTION)?

number;

Creates selection command

Table 6.6: This table represents the commands of the Selection layer.

Deletion Layer

Table 6.7 represents the commands of the Deletion Layer. This layer handles all deletion com-

mands that the user dictates.

Rule Description

deletionCommand: (DELETE | REMOVE) (line

| elementsElement);

Creates deletion command

Table 6.7: This table represents the commands of the Deletion layer.

Invocation Layer

Table 6.8 represents the commands of the Invocation Layer. This layer handles all invocation

commands that the user dictates.

Rule Description

invocationCommand: CALL? elementsEle-

ment;

Creates invoke command

Table 6.8: This table represents the commands of the Invocation layer.

Common Layer

Table 6.9 and Table 6.10 represent the commands of the Invocation Layer. This layer handles all

invocation commands that the user dictates.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 106

Rule Description

fieldModifier: (FINAL | CONST)? modifier

TRANSIENT? VOLATILE?;

Adds different modifications to a field.

For example, final static public.

variableModifier: (FINAL | CONST) | STATIC; Adds final or static to a field.

modifier: ABSTRACT? STATIC? accessLevel; Adds abstract, static and access level.

accessLevel: PRIVATE | PUBLIC | PRO-

TECTED;

Adds access level.

localVariableDeclaration: variableModifier*

elementsName OF_TYPE Element;

Declares a local variable.

statement: expression | RETURN expression?

| TRY CATCH? FINALLY? | THROW expression

| SWITCH expression? | BREAK | CONTINUE |

caseVars elementsElement;

Defines a statement.

expression: primary | expression (plus-

Vars plusVars | minusVars minusVars) |

expression (equalsVars | isDifferentVars |

lessThanEqualsVars | greaterThanEqualVars

| greaterThanVars | lessThanVars | IS_NOT

| IS) expression | (plusVars | minusVars |

plusVars plusVars | minusVars minusVars)

expression | IF expression ((AND | OR) expres-

sion)* THEN command (ELSE command)?

| expression (equalsVars | isDifferentVars |

lessThanEqualsVars | greaterThanEqualVars |

greaterThanVars | lessThanVars | IS_NOT | IS)

expression | NEW (expression | elementRef) |

ASSIGN expression TO expression;

Defines an expression.

Table 6.9: This table represents the commands of the Common layer.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 107

Rule Description

primary: OPEN_PARENTHESES expression? |

elementsElement | number;

Defines the most primitive expression.

elementsElement: (elementRef OF)? elemen-

tRef;

Reference to an element of an element.

For example, method of a class.

elementLocation: locationRef (elementRef |

line);

Reference to element location.

fieldRef:,FIELD (elementsName? OF_TYPE El-

ement | OF_TYPE Element namedElement |

elementsName);

Reference to a field.

elementRef: classRef | fieldRef | enumRef | in-

terfaceRef | unspecifiedRef;

Reference to an element.

classRef: CLASS Element; Reference to a class.

namedElement: reference? elementsName; Reference to an element.

elementsName: (Element AND)* Element; Defines a set of elements.

enumRef: ENUM Element; Reference to an enum.

interfaceRef: INTERFACE Element; Reference to an interface.

unspecifiedRef: Element; Reference to an unspecified element.

reference: NAMED | CALLED; Different variations of references.

locationRef: INSIDE | IN | AFTER | BEFORE |

ABOVE | BELOW;

Defines variations of locations.

parametersList: (parameter AND)* parame-

ter;

Defines a list of parameters.

parameter: elementsElement (OF_TYPE Ele-

ment)?;

Defines a parameter,

dataType: CLASS | ENUM | INTERFACE; Defines data types.

line: LINE NUMBER? number; Defines a line. For example, line number

6.

number: Number | ZERO | ONE | TWO | THREE

| FOUR | FIVE | SIX | SEVEN | EIGHT | NINE;

Defins numbers.

Table 6.10: This table is the continuation of Table 6.9.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 108

Forms of Expressions

Table 6.11 and Table 6.12 represents the commands of the forms of expressions.

Rule Description

returnsVars: THAT_RETURNS | RETURNS |

RETURN;

Defines different variations to pro-

nounce "returns".

implementsVars: IMPLEMENTS | IMPLE-

MENT | THAT_IMPLEMENTS;

Defines different variations to pro-

nounce "implements".

extendsVars: EXTENDS | EXTEND |

THAT_EXTENDS;

Defines different variations to pro-

nounce "extends".

plusVars: PLUS | MATH_PLUS; Defines different variations to pro-

nounce "plus".

minusVars: MINUS | MATH_MINUS; Defines different variations to pro-

nounce "minus".

equalsVars: IS_EQUAL_TO | EQUAL_TO |

EQUALS_TO | EQUALS | IS_EQUALS;

Defines different variations to pro-

nounce "equals".

isDifferentVars: IS_DIFFERENT_FROM | DIF-

FERENT_FROM;

Defines different variations to pro-

nounce "is different".

lessThanVars: LESS_THAN |

LESS_THAN_MATH | IS_LESS_THAN;

Defines different variations to pro-

nounce "less than".

lessThanEqualsVars: LESS_THAN_EQUAL

| LESS_THAN_EQUAL_MATH |

LESS_THAN_EQUAL_MATH_SPACE;

Defines different variations to pro-

nounce "less than equals".

Table 6.11: This table represents the commands of the forms of expressions of different com-

mands.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 109

Rule Description

greaterThanVars: GREATER_THAN

| GREATER_THAN_MATH |

IS_GREATER_THAN;

Defines different variations to pro-

nounce "greater than".

greaterThanEqualVars:

GREATER_THAN_EQUAL |

GREATER_THAN_EQUAL_MATH |

GREATER_THAN_EQUAL_MATH_SPACE;

Defines different variations to pro-

nounce "greater than equal".

forEachVars: FOR_EACH |

FOR_EACH_SPACE;

Defines different variations to pro-

nounce "for each".

caseVars : CASE | IN_CASE; Defines different variations to pro-

nounce "case".

Table 6.12: This table is the continuation of Table 6.11.

6.3.5 Lexer

This section describes the lexer of the Dictation Parser module. The lexer is built so it only has

simple regular expressions and definitions.

• METHOD: ’method’;

• FUNCTION: ’function’;

• CONSTRUCTOR: ’constructor’;

• FIELD: ’field’;

• BLOCK: ’block’;

• INSIDE: ’inside’;

• IN: ’in’;

• AFTER: ’after’;

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 110

• BEFORE: ’before’;

• ABOVE: ’above’;

• BELOW: ’below’;

• INNER: ’inner’;

• OF_TYPE: ’of type’;

• NEW: ’new’;

• NAMED: ’named’;

• CALLED: ’called’;

• LINE: ’line’;

• NUMBER: ’number’;

• OPTION: ’option’;

• AN: ’an’;

• A: ’a’;

• THAT_ACCEPTS: ’that accepts’;

• WITH: ’with’;

• AND: ’and’;

• OR: ’or’;

• TO: ’to’;

• FROM: ’from’;

• GO_TO: ’go to’;

• EXIT: ’exit’;

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 111

• QUIT: ’quit’;

• WE_ARE_DONE_WITH: ’we are done with’;

• MAKE_IT: ’make it’;

• CHANGE_IT: ’change it to’;

• CREATE: ’create’;

• OPEN: ’open’;

• OPEN_PARENTHESES: ’open parentheses’;

• CALL: ’call’;

• OF: ’of’;

• PERIOD: ’period’;

• PERIOD_CHAR: ’.’;

• DELETE: ’delete’;

• REMOVE: ’remove’;

• ASSIGN: ’assign’;

• PLUS: ’plus’;

• MATH_PLUS: ’+’;

• MINUS: ’minus’;

• MATH_MINUS: ’-’;

• IS: ’is’;

• IS_NOT: ’is not’;

• IS_EQUAL_TO: ’is equal to’;

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 112

• EQUAL_TO: ’equal to’;

• EQUALS_TO: ’equals to’;

• EQUALS: ’equals’;

• IS_EQUALS: ’is equals’;

• IS_DIFFERENT_FROM: ’is different from’;

• DIFFERENT_FROM: ’different from’;

• LESS_THAN: ’less than’;

• LESS_THAN_MATH: ’<’;

• IS_LESS_THAN: ’is less than’;

• IS_LESS_THAN_EQUAL: ’is less than equal’;

• IS_LESS_THAN_EQUALS: ’is less than equals’;

• LESS_THAN_EQUAL: ’less than equal’;

• LESS_THAN_EQUALS: ’less than equals’;

• LESS_THAN_EQUAL_MATH: ’<=’;

• LESS_THAN_EQUAL_MATH_SPACE: ’< =’;

• GREATER_THAN: ’greater than’;

• GREATER_THAN_MATH: ’>’;

• IS_GREATER_THAN: ’is greater than’;

• GREATER_THAN_EQUAL: ’greater than equal’;

• GREATER_THAN_EQUAL_MATH: ’>=’;

• GREATER_THAN_EQUAL_MATH_SPACE: ’> =’;

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 113

• IF: ’if’;

• THEN: ’then’;

• ABSTRACT: ’abstract’;

• ASSERT: ’assert’;

• CATCH: ’catch’;

• CLASS: ’class’;

• CONST: ’const’;

• DO: ’do’;

• ELSE: ’else’;

• ENUM: ’enum’;

• EXTENDS: ’extends’;

• EXTEND: ’extend’;

• THAT_EXTENDS: ’that extends’;

• FINAL: ’final’;

• FOR: ’for’;

• IMPLEMENTS: ’implements’;

• THAT_IMPLEMENTS: ’that implements’;

• IMPLEMENT: ’implement’;

• INTERFACE: ’interface’;

• PRIVATE: ’private’;

• PROTECTED: ’protected’;

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 114

• PUBLIC: ’public’;

• STATIC: ’static’;

• SUPER: ’super’;

• THROW: ’throw’;

• THROWS: ’throws’;

• TRANSIENT: ’transient’;

• TRY: ’try’;

• VOID: ’void’;

• VOLATILE: ’volatile’;

• WHILE: ’while’;

• FOR_EACH: ’foreach’;

• FOR_EACH_SPACE: ’for each’;

• THAT_RETURNS: ’that returns’;

• RETURNS: ’returns’;

• RETURN: ’return’;

• SWITCH: ’switch’;

• SYNCHRONIZED: ’synchronized’;

• STRICTFP: ’strictfp’;

• NATIVE: ’native’;

• PACKAGE: ’package’;

• IMPORT: ’import’;

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 115

• INSTANCEOF: ’instanceof’;

• FINALLY: ’finally’;

• CONTINUE: ’continue’;

• DEFAULT: ’default’;

• BREAK: ’break’;

• CASE: ’case’;

• IN_CASE: ’in case’;

• ZERO: ’zero’;

• ONE: ’one’;

• TWO: ’two’;

• THREE: ’three’;

• FOUR: ’four’;

• FIVE: ’five’;

• SIX: ’six’;

• SEVEN: ’seven’;

• EIGHT: ’eight’;

• NINE: ’nine’;

• WS: [\t \r \n \u000C]+ -> skip;

• Number: [0-9]+;

• Element: [a-zA-Z0-9]+;

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 116

for(int i = 0; i < n; i++)

Figure 6.4: A simple for loop

6.3.6 Grammar Testing

To test the grammar, we provide two programs and their transcripts. The first example is an

implementation of a linked list and the second is an example of the Command design pattern.

LinkedList Example

This is an implementation of the data structure linked list. Figure 6.5-Figure 6.11 presents the

program that implements Linked List. Figure 6.3.6 lists the dictations that generate this pro-

gram.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 117

public class LinkedList implements Iterable {

private Node head;

private Node tail;

private int size;

public Iterator iterator(){

return new LLIterator();

}

private class Node{

public Object data;

public Object next;

public Node(Object data, Object next){

this.next = next;

this.data = data;

}

public Object getNext(){

return next;

}

public Object getData(){

return data;

}

public void setNext(Object next){

this.next = next;

}

}

Figure 6.5: Implementation of Linked List in Java part 1

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 118

private class LLIterator implements Iterator{

private Node nextNode;

private boolean removeOK;

private int posToRemove;

private LLIterator(){

nextNode = head;

removeOK = false;

posToRemove = -1;

}

public boolean hasNext(){

return nextNode != null;

}

public Object next(){

assert hasNext();

Object result = nextNode.getData();

nextNode = nextNode.getNext();

removeOK = true;

posToRemove++;

return result;

}

Figure 6.6: Implementation of Linked List in Java part 2

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 119

public void remove(){

assert removeOK;

removeOK = false;

LinkedList.this.remove(posToRemove);

posToRemove--;

}

}

public void makeEmpty(){

head = tail = null;

size = 0;

}

public Object remove(int pos){

assert pos >= 0 && pos < size;

Object result;

if(pos == 0){

result = head.getData();

head = head.getNext();

if(size == 1)

tail = null;

}

else{

Node temp = head;

for(int i = 1; i < pos; i++)

temp = temp.getNext();

result = temp.getNext().getData();

temp.setNext(temp.getNext().getNext());

if(pos == size - 1)

tail = temp;

}

size--;

return result;

}

public Object get(int pos){

assert pos >= 0 && pos < size;

Object result;

if(pos == size - 1)

result = tail.getData();

else{

Node temp = head;

for(int i = 0; i < pos; i++)

temp = temp.getNext();

result = temp.getData();

}

return result;

}

public void insert(int pos, Object obj){

assert pos >= 0 && pos <= size;

if(pos == 0)

addFirst(obj);

else if(pos == size)

add(obj);

else{

Node temp = head;

for(int i = 1; i < pos; i++)

temp = temp.getNext();

Node newNode = new Node(obj, temp.getNext());

temp.setNext(newNode);

size++;

}

}

public void add(Object obj){

Node newNode = new Node(obj, null);

if(size == 0)

head = newNode;

else

tail.setNext(newNode);

tail = newNode;

size++;

}

public void addFirst(Object obj){

if(size == 0)

add(obj);

else{

Node newNode = new Node(obj, head);

head = newNode;

size++;

}

}

public String toString(){

String result = "";

Node temp = head;

for(int i = 0; i < size; i++){

result += temp.getData() + " ";

temp = temp.getNext();

}

return result;

}

}

Figure 6.7: Implementation of Linked List in Java part 3

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 120

public void remove(){

assert removeOK;

removeOK = false;

LinkedList.this.remove(posToRemove);

posToRemove--;

}

}

public void makeEmpty(){

head = tail = null;

size = 0;

}

Figure 6.8: Implementation of Linked List in Java part 4

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 121

public Object remove(int pos){

assert pos >= 0 && pos < size;

Object result;

if(pos == 0){

result = head.getData();

head = head.getNext();

if(size == 1)

tail = null;

}

else{

Node temp = head;

for(int i = 1; i < pos; i++)

temp = temp.getNext();

result = temp.getNext().getData();

temp.setNext(temp.getNext().getNext());

if(pos == size - 1)

tail = temp;

}

size--;

return result;

}

Figure 6.9: Implementation of Linked List in Java part 5

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 122

public Object get(int pos){

assert pos >= 0 && pos < size;

Object result;

if(pos == size - 1)

result = tail.getData();

else{

Node temp = head;

for(int i = 0; i < pos; i++)

temp = temp.getNext();

result = temp.getData();

}

return result;

}

public void insert(int pos, Object obj){

assert pos >= 0 && pos <= size;

if(pos == 0)

addFirst(obj);

else if(pos == size)

add(obj);

else{

Node temp = head;

for(int i = 1; i < pos; i++)

temp = temp.getNext();

Node newNode = new Node(obj, temp.getNext());

temp.setNext(newNode);

size++;

}

}

Figure 6.10: Implementation of Linked List in Java part 6

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 123

public void add(Object obj){

Node newNode = new Node(obj, null);

if(size == 0)

head = newNode;

else

tail.setNext(newNode);

tail = newNode;

size++;

}

public void addFirst(Object obj){

if(size == 0)

add(obj);

else{

Node newNode = new Node(obj, head);

head = newNode;

size++;

}

}

public String toString(){

String result = "";

Node temp = head;

for(int i = 0; i < size; i++){

result += temp.getData() + " ";

temp = temp.getNext();

}

return result;

}

}

Figure 6.11: Implementation of Linked List in Java part 7

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 124

This is the list of the dictations that generates the program.

• Create class LinkedList that implements Iterable

• Create private field head of type Node

• Create private field tail of type Node

• Create private field size of type int

• Create method iterator that returns Iterator

• Return new LLIterator

• Exit method iterator

• Create inner class Node

• Create field data of type Object

• Make it public

• Create public field next of type Object

• Create constructor that accepts data of type Object and next of type Node

• Assign next to this.next

• Assign data to this.data

• Create method getNext that returns Object

• Return next

• Create method getData that returns Object

• Return data

• Create method setNext that accepts next of type object

• Assign next to this.next

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 125

• Exit class Node

• Create inner class LLIterator that implement Iterator

• Create a constructor

• Assign head to field nextNode

• Assign false to field removeOK

• Assign -1 to field posToRemove

• Ceate method hasNext that returns boolean

• Return is nextNode different from null

• Ceate method next that return Object

• Assert hasNext

• Create result of type object and assign nextNode.getData to it

• Call nextNode.getNext and assign it to nextNode

• Assign true to removeOK

• Increase posToRemove

• Return result

• Create method remove

• Assert removeOK

• Assign false to removeOK

• Call LinkedList.this.remove that accepts posToRemove

• Decrease posToRemove

• Exit LLIterator

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 126

• Crete method makeEmpty

• Assign null to tail and head

• Assign zero to size

• Create method remove that accept pos of type int and returns Object

• Assert is pos more than 0 and pos less than size

• Create result of type Object

• If pos equal to 0 then

• Call head.getData and assign it to result

• Call head.getNext and assign it to head

• If size equal 1 then

• Assign null to tail

• Exit the if

• Else

• Create temp of type Node and assign head to it

• For i from 1 to pos

• Call temp.getNext and assign it to temp

• Exit the loop

• Call temp.getNext.getData and assign it to result

• Call temp.setNext that accepts temp.getNext.getNext

• If pos equal size minus 1 then

• Assign temp to tail

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 127

• Exit else

• Decrease size

• return result

• Create method get that accepts pos of type int and returns Object

• Assert is pos more or equal to 0 and less than size

• Create result of type Object

• If pos equal size minus 1 then

• Call tail.getData and assign it to result

• Else

• Create temp of type Node and assign head to it

• For i from 0 to pos

• Call temp.getNext and assign it to temp

• Exit for

• Call temp.getData and assign it to result

• Exit else

• Return result

• Create method insert that accepts pos of type int and obj of type Object

• Assert is pos more or equal to 0 and less than size

• If pos equal to 0 then

• Call addFirst that accepts obj

• Else if pos equal size then

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 128

• Call add that accepts obj

• Else

• Assign head to temp of type Node

• For i from 1 to pos

• Call temp.getNext and assign it to temp

• Exit the for loop

• Create new Node that accepts obj and temp.getNext and assign it to newNode of type

Node

• Call temp.setNext that accept newNode

• Increase size

• Exit method insert

• Create method add that accepts obj of type Object

• Create new Node that accepts obj and null and assign it to newNode of type Node

• If size equal 0 then

• Assign newNode to head

• Else

• Call tail.setNext that accepts newNode

• Exit

• Assign newNode to tail

• Increase size

• Create method addFirst that accepts obj of type Object

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 129

• If size equal 0 then

• Call add that accepts obj

• Else

• Create new Node that accepts obj and head and assign it to newNode of type Node

• Assign newNode to head

• Increase size

• Create method toString that returns String

• Create result of type String and initialize it with an empty string

• Assign head to temp of type Node

• For i from 0 to size

• Result plus equal temp.getData plus space

• Call temp.getNext and assign it to temp

• Exit the loop

• Return result

Car Builder Example

This is an implementation of the Builder design pattern. We created a class of type Car that has

properties and contains an inner class of type CarBuilder that has the functionality to create

an instance of Car. In addition, it has main. Figure 6.12-Figure 6.13 presents the program that

implements Linked List. Figure 6.3.6 lists the dictations that generate this program.

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 130

public class Car{

private String _wheels;

private String _engine;

private String _body;

private Car(String wheels, String engine, String body){

if(body == null || engine == null || wheels == null)

return;

_wheels = wheels;

_engine = engine;

_body = body;

}

public static class CarBuilder{

String Body;

String Wheels;

String Engine;

public Car BuildCar(){

if(Body != null && Wheels != null && Engine != null){

return new Car(Wheels, Engine, Body);

}

return null;

}

}

Figure 6.12: Implementation of the design pattern Builder that creates a class of type Car part 1

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 131

public static void main(String[] args){

Car.CarBuilder carBuilder = new CarBuilder();

carBuilder.Engine = "honda";

carBuilder.Wheels = "4";

carBuilder.Body = "private";

Car car;

car = carBuilder.BuildCar();

}

}

Figure 6.13: Implementation of the design pattern Builder that creates a class of type Car part 2

This is the list of the dictations that generate the program.

• Create class car

• Create field wheel of type string

• Create field engine of type string

• Create field body of type string

• Create private constructor that accept wheels of type string engine of type string and body

of type string

• If body equals null or engine equals null or wheels equals null then return

• Assign wheels to field wheels

• Assign engine to field engine

• Assign body to field body

• Create inner class CarBuilder

• Create public field body of type string

CHAPTER 6. PROGRAMMING IN NATURAL LANGUAGE 132

• Create public field wheels of type string

• Create public field engine of type string

• Create method buildCar that returns Car

• If body different from null or wheels different from null or engine different from null then

return new car that accepts wheels engine and body

• Return null

• Create main inside car

• Create new CarBuilder and assign it to carBuilder of type carBuilder

• Assign honda as string to carBuilder.engine

• Assign 4 as string to carBuilder.engine

• Assign private as string to carBuilder.engine

• Create car of type car

• Call carBuilder.BuildCar and assign it to car

6.4 Implementation

To implement the Dictation Parser, we reviewed different applications such as: BNFC, BNF

Parser Generator, BNF for Java, Antlr 4. We decided to use Antlr 4 because it can be integrated

well in our solution, it is a popular and well-known tool and it is well known to other members

of the team. The implementation of the Dictation Parser is explained in details in 7.3.

Chapter 7

A Prototype Tool

7.1 Introduction

This chapter discusses the prototype that provides a proof of concept for this research. It in-

cludes every module of the prototype discussed and described in this chapter. All architecture

designs and specifications are described in detail. Note that not all modules and ideas that are

discussed here are implemented, this detail will be mentioned for every module.

This prototype presents an ability of programming using speech and represents code in a

compact way. It is written in the Java language and uses different third party services and appli-

cations. Every service and application that is used is discussed and described.

7.2 Speech to Text

This is a module which is responsible for the translation from speech to text. The engine that

is used for the STT process is the Google Speech V2 server. How to interact with this server is

shown in Mey [11] .

7.2.1 Google Speech V2 Server

Google Speech V2 server provides STT service with no charge for everyone who willing to use

their service.

133

CHAPTER 7. A PROTOTYPE TOOL 134

Remark:In order to use this service you have to be a chromium user (https://www.chromium.

org/) because Google’s server requires developer’s key.

Host

In order to access this service the host that must be used is https://www.google.com/speech-api/

v2/recognize.

Request

The request that must be sent to Google’s server is:

curl -X POST \

--data-binary @’test.flac’ \

--header ’Content-Type: audio/x-flac; rate=44100;’ \

’https://www.google.com/speech-api/v2/recognize?output=json&lang=en-us&key=

AIzaSyDT41KV3j_c2OseWNNt4xv79MD9sj9p2j4’

Explanation about the curl:

data-binary is a path on your local machine to audio file that you want to translate.

header is the information about encoding of the audio. In this example is flac with a bit rate of

44,100.

uri is the host of the server with concatenation of the output format, language, and developer

key. In this example we use json (output=json), English (lang=en-us), and our developer

key is AIzaSyDT41KV3j_c2OseWNNt4xv79MD9sj9p2j4.

Response

The response format is JSON. When Google is 100% confident in its translation, it will return the

following object:

{

"result":

https://www.chromium.org/
https://www.chromium.org/
https://www.google.com/speech-api/v2/recognize
https://www.google.com/speech-api/v2/recognize

CHAPTER 7. A PROTOTYPE TOOL 135

[

{

"alternative":

[

{

"transcript":"good morning Google how are you feeling today"

}

],

"final":true

}

],

"result_index":0

}

When it’s doubtful, it adds a confidence parameter for you. It also seems to add multiple tran-

scripts for some reason.

{

"result":

[

{

"alternative":

[

{

"transcript":"this is a test",

"confidence":0.97321892

},

{

"transcript":"this is a test for"

}

],

"final":true

}

CHAPTER 7. A PROTOTYPE TOOL 136

],

"result_index":0

}

7.2.2 Speech to Text Library

This library is made by Florian Schulz [17], it is used to bring speech recognition to Java applica-

tions using WebSocket and Google Speech V2 Server. The new API of Google’s server has a limit

of 50 requests per day.

This library is an open source with dependency in the Processing library but we removed

the dependency in Processing because we would like to allow any Java application to use this

library, hence we had to make modifications so it will fit our needs. "Processing is a flexible

software sketchbook and a language for learning how to code within the context of the visual

arts" Ben and Casey [2]. Processing is not part of this project but you can read about it in this

link. The modifications that were made to this library:

• The dependency in Processing was removed so the application could run as a simple Java

project.

• A new response parser has been developed because the one that was in use didn’t know

how to parse the new format of Google Speech V2.

• Auto Speech Recording had memory issues.

• Various redesign modifications.

We use this library in the Speech To Text layer. It is shown in Schulz [17] where to get the source

code from and how to use its API.

7.2.3 Testing the Module

In order to be sure that we can use this module in our system we performed several tests with

several testers. We used the Linked List program that is presented in section 4.17 to perform

the main test. Table 7.1 and Table 7.2 are the result of the dictation of the Linked List program.

https://processing.org

CHAPTER 7. A PROTOTYPE TOOL 137

Every command was dictated separately, each row contains three columns: Expected Result, is

the context that was dictated, Actual Result, is the context that was returned, and Match Score,

represents how both contexts are matched. Since programming is not a natural language then

we expect mismatches. For example, the user may dictate "create field has next of type boolean".

He means that he wants to create a field named hasNext which is of type boolean. The module

will return "create field has next of type boolean". We do not expect the speech to text engine

to return hasNext, therefore, this conclusion should be considered in the Dictation Parser. A

similar issue is shortened words. For example, if the user dictates "create field pos" then the

system may return "create field pose". pos is different from pose, since pos is not a legal word in

the language. We expect this mismatch and assume that this will be handled by the user.

We calculated the average matching and the result was 97.5%. This result is within the ac-

cectable limitations for our system. The response time is dependent on the length of the context

and how busy the server is. The response time is [0.5, 5] seconds. The response time is within

our acceptable range. If we want to upgrade the performance of our system we may consider to

upgrading this module. For example, we may exchange it with IBM Watson.

CHAPTER 7. A PROTOTYPE TOOL 138

Expected Result Actual Result Match

Score (%)

create class linked list create class linked list 100

create inner class node create inner class node 100

create field data of type object create field data of type object 100

make it public make it public 100

create public field next of type ob-

ject

create public field next of type ob-

ject

100

we are done with class node we are done with class node 100

create field tail of type node create field tail of type node 100

create an int field size create an int field size 100

create method iterator create method iterator 100

return new llinterrater return new ll interrater 100

number 2 number 2 100

exit method exit method 100

create inner class LLinterrater create inner class LLL interrater 90

create a constructor create a constructor 100

assign head to field next node assign head to field next node 100

assign false to field removeok assign false to field remove ok 100

assign minus 1 to field postore-

move

assign minus 12 field post to re-

move

60

number 2 number 2 100

finish constructor finish constructor 100

create method hasnext create method hasnext 100

return nextnode is not equal to

null

return next node is not equal to

null

100

we are done with class LLinter-

rater

we are done with class LLL inter-

rater

90

Table 7.1: This table represents the context that was dictated and the context that was returned.

For each pair there is a matching score [0, 100]%.

CHAPTER 7. A PROTOTYPE TOOL 139

Expected Result Actual Result Match

Score (%)

create method get that accepts pos

of type int

create method get that accepts

pose of type int

100

assert pos is between 0 and size assert pose is between 0 and size 100

if pos equals size -1 ethos equals size -1 80

then assign tail. Data to result then assign tail. Data to result 100

otherwise otherwise 100

temp is asigned head temp is a signed head 100

create a loop from one to pos create a loop from one to pose 100

assign them. next to temp sign them. Next to temp 100

set the result to temp. data set result to temp. Data 100

return result return result 100

Table 7.2: This table is the continuation of Table 7.1.

7.3 BNF Parser

Antlr 4

Antlr stands for Another Tool for Language Recognition. The tool is able to generate compiler or

interpreter for any computer language. In addition to obvious use, e.g. the need to parse a real

’big’ programming language such as Java, PHP or SQL, it can help with smaller, more common

tasks.

It is useful any time you need to evaluate expressions unknown at compile-time or to parse

non-trivial user input or files in a weird format. Of course, it is possible to create a custom

handmade parser for any of these tasks. However, it usually takes much more time and effort. A

little knowledge of a good parser generator may turn these time-consuming tasks into easy and

fast exercises.

ANTLR seems to be popular in open source word. Among others, it is used by Apache Camel,

Apache Lucene, Apache Hadoop, Groovy and Hibernate. They all needed parser for a custom

CHAPTER 7. A PROTOTYPE TOOL 140

language. For example, Hibernate uses ANTLR to parse its query language HQL.

ANTLR is code generator. It takes so called grammar file as input and generates two classes:

lexer and parser.

Lexer runs first and splits input into pieces called tokens. Each token represents a more or

less meaningful piece of input. The stream of tokes is passed to parser which does all necessary

work. It is the parser which builds an abstract syntax tree, interprets the code or translates it into

some other form.

Grammar file contains everything ANTLR needs to generate correct lexer and parser Whether

it should generate java or python classes, whether parser generates abstract syntax tree, assem-

bler code or directly interprets code and so on.

Most importantly, grammar file describes how to split input into tokens and how to build

tree from tokens. In other words, grammar file contains lexer rules and parser rules.

Each lexer rule describes one token: TokenName: regular expression; Parser rules are more

complicated. The most basic version is similar as in lexer rule: ParserRuleName: regular expres-

sion;

They may contain modifiers that specify special transformations on input, root and childs in

result abstract syntax tree or actions to be performed whenever the rule is used. Almost all work

is usually done inside parser rules.

In order to learn how to use Antlr 4, I used The Definitive ANTLR 4 [14] book, written by

Terence Parr who is the man behind Antlr.

Chapter 8

Summary

In this final chapter, I conclude by describing the progress made towards researching the field of

programing by using natural language in terms of the prototype development, the experiments

that we carried out, the concepts that have been developed, and additional products that were

developed during the research. I also suggest some future research directions that could provide

the next steps along the path to a practical and widely applicable programming systems.

We have explored the domain of software development tools and programming environ-

ments. We have developed a concept enabling the programmer to use mobile devices as pro-

gramming environments in addition to PCs and laptops. We encountered a number of ques-

tions that we had to answer before starting to develop a concept and a prototype for such an

idea. What language are we going to use? How will the code be represented on small screens?

How will the programmer interact with the mobile device?

After finding solutions to all those questions we decided that we need to do a set of experi-

ments to understand how a programmer interacts with a programming environment when she

needs to use her voice. Following the experiments we extracted the most significant information

in order to understand how programmers tend to describe the code that they want to write. The

information that we extracted is essential for this study because it allowed us to determine the

best direction concerning how to proceed with the study.

After we have completed the experiments, we decided that we need to explore the existing

programming environments and features in different programming languages, especially Java.

We collected a huge set of programming features, which we will need in future work in order to

141

CHAPTER 8. SUMMARY 142

expand the usability of the application that will be built.

Based on the features that we have collected, we have developed a series of concepts of how

code may be represented on a small screen (mobile phones and tablets). Those concepts may

be used in future work to complete the prototype and to prove that development on mobile

devices using voice and touch is feasible. We had the idea of allowing every programmer to

configure the representation of the code that makes the most sense to him or her. Meaning, a

programmer would be able to configure the representation of the code that would be easier for

his or her understanding. This is a very advanced idea and not easy for implementation, but we

managed to develop a fundamental concept of how it may work.

As mentioned, we found that in order to allow the programmer to code on mobile devices we

have to develop programming by voice. Therefore, we researched related works, available sys-

tems and tools, and developed two modules: a speech to text engine, based on Google Speech

Server, and a context free grammar parser and lexer — we used Antlr4 for this. Those two mod-

ules will be used in future work.

For future work we plan to use the modules that already have been developed and to de-

velop an IDE for devices. In particular, we need to develop an interface for PCs and laptops and

afterwards on mobile devices. This interface needs to be integrated with the Dictation Parser

and the Speech to Text. In addition, the Parser and Lexer are designed and written in such a way

so it will be very easy to expand their usability. Regarding the Speech to Text, its performance

depends on Google’s server performance which is not always has a fast responses and limited

to 50 requests per day, meaning we may exchange it with other speech to text module. The one

that we are aiming for now is IBM Watson (link). Additional future work is to make this system

works for other languages e.g., C++.

We published and presented a paper in the MobileSoft Conference which is part of the ICSE

conference took place in Florence in May 2015.

All projects are committed to GitHub (link to the repository on GitHub) and they are public,

which means every programmer is able to connect to that repository and contribute as he or she

wishes.

https://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/
https://github.com/shaolinrabbi/DeveryWhere.git

Appendix A

Publications and Talks

This appendix contains all additional products that this research yielded.

A.1 Advanced Software Tools Seminar in The Blavatnik School

of Computer Science in Tel-Aviv University

During the research process we gave a three hour lecture. Link to the presentation.

Link to the information of the lecture.

A.2 MobileSoft 2015 Conference

Yishai A. Feldman, Ari Gam, Alex Tilkin, and Shmuel Tyszberowicz submitted a paper to a mobile

research conference and it has been accepted. Details of the conference and the paper provided

in the Following list.

• Conference Name: MobileSoft 2015

• Conference Website: http://mobilesoftconf.org/2015/

• Location: Italy, Florance

• Dates: May 16-17, 2015

• Paper’s Title: Deverywhere: Develop Software Everywhere

143

https://www.icloud.com/keynote/AwBWCAESEMmhJ9LSgI9wRLhfRTk81c4aKj7lviy1R3R9Yf61KLkOjxnc8qt5FRwhMAmuF5qYNCPOZK9QGyrifKcccAMCUCAQEEIDx6Kr_gzGatd8ip7oAT1CRKjYgJolac-V7YeH3kQRO3#Deverywhere-TAU
http://www.cs.tau.ac.il/~amiramy/SoftwareSeminar/alexTilkinJan2015.html
http://mobilesoftconf.org/2015/

APPENDIX A. PUBLICATIONS AND TALKS 144

• Authors: Yishai A. Feldman, Ari Gam, Alex Tilkin, and Shmuel Tyszberowicz.

• Affiliations: IBM Research, Tel Aviv University, The Academic College Tel Aviv Yaffo.

This conference was the 2nd ACM International Conference on Mobile Software Engineering

and Systems Sponsored by ACM SIGSOFT.

Deverywhere: Develop Software Everywhere
Yishai A. Feldman,∗ Ari Gam,† Alex Tilkin,‡ and Shmuel Tyszberowicz‡

∗IBM Research – Haifa, Israel; Email: yishai@il.ibm.com
†Blavatnik School of Computer Science, Tel Aviv University, Israel; Email: theprap@gmail.com

‡School of Computer Science, The Academic College Tel Aviv Yaffo, Israel; Emails: alextilk@gmail.com, tyshbe@tau.ac.il

Abstract—Professional programmers use desktop or laptop
computers as a preference. However, they sometimes need to
continue their work on the go, when they may only have access
to mobile devices. Thus, mobile devices can be important but
not exclusive development platforms. Therefore, it is necessary
to support programming in conventional languages on mobile
devices, such as phones and tablets.

Programming on mobile devices presents two major obstacles:
the lack of a physical keyboard, and the small screen space, which
limits the amount of code that can be shown simultaneously.
This paper addresses both challenges, and offers a method to
enable programming on mobile and other devices with limited
input and output capabilities, by using templates to make voice
and touch input very effective for programming, and showing
much more code in a limited space. These ideas are also relevant
to programming on laptop and desktop systems, for people
with disabilities such as repetitive-stress injuries (RSI) that limit
keyboard usage, and partial vision loss, which requires the use
of very large fonts.

I. INTRODUCTION

In the early days of computing, programmers had to work
in offices. Personal computers allowed programmers to work
at home as well. Laptops further expanded the working en-
vironment, and we often see people programming in coffee
shops, terminals, trains, and airplanes. With ubiquitous mobile
devices becoming increasingly popular, there is an opportunity
to allow programmers to work in even more environments.
While such small devices are unlikely to become the preferred
working medium, they can be useful in circumstances where
urgent action is required and other equipment is unavailable.

This scenario presents two major obstacles: first, the lack
of a convenient keyboard; and second, the small screen space,
which limits the amount of code that can be shown simultane-
ously. Some have advocated the creation of new programming
languages for mobile platforms,1 but the cost of adopting a
new language, with its related tools and infrastructure, seems
to be too great for the benefit of occasionally programming on
a mobile device. This applies to the development of mobile and
non-mobile applications alike; professional programmers who
develop mobile applications still prefer to use large screens
and physical keyboards. Instead, we focus on easy ways to
use existing languages, such as Java and JavaScript, on mobile
devices. Our proposed solution, called Deverywhere, addresses
both challenges, by using templates to make voice and touch
input very effective for programming, and to show much more

1See, for example, the “Theme and goals” section of the PROMOTO 2014
Workshop, http://research.microsoft.com/en-us/events/promoto2014.

code in a limited space. Templates, used in context, allow voice
input for program creation, editing, and navigation; and allow
a compact representation of programs that makes maximum
use of the given screen space. Both uses require a high degree
of configuration, since programmers have different preferences
regarding the way they want to voice and see programs. The
underlying representation is always the original language, so
that each programmer can see a tailored view while seamlessly
collaborating on the same code with others.

These ideas are also relevant to programming on laptop
and desktop systems, for people with disabilities such as
repetitive-stress injuries (RSI) that limit keyboard usage, and
partial vision loss, which requires the use of very large
fonts. For some programmers, no screen is large enough, and
so we expect that these programmers will use the compact
representation of code even on large displays.

II. PROGRAMMING BY VOICE AND TOUCH

Dictation systems exist today, but their use for programming
is extremely limited. Lacking any domain knowledge, they
require most of the program to be dictated letter by letter,
which is impractical. By building an understanding of program
syntax and some semantics into the dictation tool, it is possible
to make this process much more efficient. For example, the
spoken words “for i from zero to n” can be interpreted as the
Java idiom

for (int i = 0; i < n; i++) body

The current insertion point would be left at the body of the
loop. Furthermore, Deverywhere will know that this place in
the template is called “the body,” so that a further instruction
to “edit the body of the for loop” will return to that point.
Touch can alternatively be used for the same purpose.

Other locations can also be associated with templates. For
example, the template above can define “the loop index” as
referring to the variable i, so that the developer can later say
“rename the loop index to j.” The general form of a Java for
statement can define the “initialization,” “test,” and “update”
locations, referring to the three parts inside the parentheses.
A conditional template may have three locations, referring to
the condition, the consequent, and alternative.

Similarly, an “iterate” template can be defined to gen-
eralize the use of iterators that are not accessible through
the Iterable interface. For example, suppose that tree
is an element of class Tree<Element>, which does not
implement Iterable but provides an iterator through a

method inOrderIterator(). The utterance “iterate on
tree in order” will create the following code:
Iterator<Element> iterator =

tree.inOrderIterator();
while (iterator.hasNext()) {

Element element = iter.next();

}
The box represents the current insertion point. In this example,
the types of the iterator and the element have been inserted
automatically, based on the type of tree. Their names have
been chosen heuristically, but they can be changed by the
developer; they can later be referred to as “the iterator” and
“the element,” respectively.

Such templates can be created for language constructs
as well as for other types of patterns, such as application
frameworks. For instance, we can dictate “event key is shift
enter” for the following common Dojo expression that checks
the details of a keyboard event:

event.keyCode == dojo.keys.ENTER
&& event.shiftKey

As part of the template-based input method, developers will
be able to specify the kind of syntactic element they are about
to enter, such as class, method, variable, or constant. A suitable
template will be applied; for example, a constant in Java
will automatically be defined as public static final.
Similarly, a “main method” will open with the already sup-
plied header public static void main(String[]
args). The same words (“main method,” “constant X,” etc.)
can be used to navigate to the appropriate element. In addition,
it should be possible to refer to elements according to their
position in the text shown on the screen; for example, “first for
loop,” “inner if statement,” “loop on i.” These templates should
be recognized regardless of how the code was entered. This
implies that Deverywhere should recognize templates from
the original language text, without relying on any external
annotations.

A convenient way to add templates should be provided,
as the number of possible templates is unlimited, and may
even be programmer-specific. Each template is associated with
utterances to create it, with named locations, and with its
compact representation. The utterances form a grammar, which
need not be completely unambiguous, since the development
environment can offer a choice between alternatives. This,
however, should be avoided as much as possible.

The same utterance and compact representation can be
associated with more than one code template, in order to sup-
port multiple programming languages. One of the significant
advantages of this template-based system is its ability to treat
multiple languages in a similar way (to the extent that the
languages provide similar mechanisms, of course).

Context is crucial to understanding. For example, names in
a program are usually limited to a relatively small set, which
depends on the current scope; a number of methods can be
used to select the correct one efficiently. One way is to start

naming a variable (or class name, method name, etc.) either
by spelling or, if it is composed of known words, by sounding
them. Once the choice becomes small enough to show it on the
screen, completion can be made by sounding the number of
the correct choice. Another way is to assign short nicknames
to variables and other named elements, then refer to them by
their nicknames. The initial definition of a variable cannot be
made in this way, as the space of choices is unlimited. If the
name is a known word or a series of known words, they can be
dictated and Deverywhere can join them in the way appropriate
for the programming language and the type of the element; for
example, using CamelCase with appropriate capitalization in
Java.

Refactoring and other source transformations, as in Eclipse,
are a must for Deverywhere, with the appropriate modification
of the relevant wizards to work with voice entry. In addition,
other capabilities would be useful. For instance, suppose the
developer wants to use the result of a method call that is part
of an expression in another context. In Eclipse, the developer
would have to mark the method call expression, then apply the
Extract Local Variable refactoring, then move the generated
variable definition upwards if necessary, and finally use it.
Instead, in the voice-programming system, the developer will
be able to say “use the result of the second call to substring.”
This will create the variable at the correct position, and insert
a use of the variable at the current insertion point.

Statically-typed languages such as Java are often very
verbose, especially in the specification of types. However, type
inference methods exist for these languages, and current IDEs
use them to identify errors and fix them automatically. The
voice-programming system will not require (yet allow) the
specification of types at any point, and will try to infer as
much information as possible. In the example above, “for i
from zero to n,” it is clear that i is an int, and this need
not be mentioned at all. When type inference fails, information
about the variable may be limited; for example, the system will
not be able to suggest methods for that variable. Therefore, the
developer should always have a verbal command that adds a
type definition to the variable at the current insertion point.
This will add the missing type at the point the variable is
defined, but will not change the current view or the current
insertion point, so that the developer can continue choosing
the method to call without further distractions.

III. PROGRAMMING ON SMALL DISPLAYS

While mobile displays are getting larger, they are still
significantly smaller than the displays developers are used to.
Even a 7” phone/tablet provides much less screen space for
programming than a typical 21” desktop display. The amount
of code that developers can see simultaneously has a great
effect on their productivity. Special techniques are therefore
required in order for programming on small displays to be
effective. The templates that are used for voice entry can also
be used for display.

There are many ways to show information visually in a
compact way; for example, using special symbols, colors,

+
L
in

k
e
d
L
is

t

-
N

o
d
e

+data

+next

-head

-tail

-size

+iterator new LLIterator
 -

L
L
Ite

r
a
to

r

-nextNode

-removeOK
-posToRemove

 nextNode ← head

removeOK ← false

posToRemove ← –1

+hasNext

 nextNode ≠ null +
n
e
x
t

assert hasNext

result ← nextNode.data

nextNode ← nextNode.next

removeOK ← true

posToRemove↑

result +
r
e
m

o
v
e

assert removeOK

removeOK ← false

LinkedList.this.remove(posToRemove)

posToRemove↓

+
L
in

k
e
d
L
is

t

+makeEmpty
 head ← tail ← null

size ← 0 +
re

m
o
v
e
(p

o
s
)

assert 0 ≤ pos < size p
o
s
 ≡

 0

result ← head.data

head ← head.next

size ≡ 1 � tail ← null e
ls

e

temp ← head

result ← temp.next.data

temp.next ← temp.next.next

pos ≡ size – 1 ? tail ← temp

size↓

result +
g
e
t(p

o
s
)

assert 0 ≤ pos < size

pos ≡ size – 1 ?
 result ← tail.data e

ls
e

temp ← head

result ← temp.data

result

∀1 ≤ i < pos

 temp ← temp.next

∀1 ≤ i < pos

 temp ← temp.next

+
L
in

k
e
d
L
is

t

+
in

s
e
rt(p

o
s
,o

b
j)

assert 0 ≤ pos < size

pos ≡ 0 ? addFirst(obj) e
ls

e

pos ≡ size ? add(obj) e
ls

e

temp ← head

newNode ← new Node(obj, temp.next)

temp.Next ← newNode

size↑
 +

a
d
d
(o

b
j)

newNode = new Node(obj, null)

size ≡ 0 ? head ← newNode

 else tail.Next ← newNode

size↑ +
a
d
d
F
irs

t(o
b
j)

assert 0 ≤ pos < size

size ≡ 0 ? add(obj)
e
ls

e

newNode ← new Node(obj, head)

head ← newNode

size↑

+ toString

Join data with spaces from head by next

∀1 ≤ i < pos
 temp ← temp.next

(a) (b) (c)

Fig. 1: The LinkedList class, as would be shown by Deverywhere.

fonts, backgrounds, borders, and even watermarks. Some
information, such as noise words (then, else, end, etc.),
types, throws declarations, access levels, and package prefixes,
can even be omitted altogether (with an option of showing
them selectively, perhaps using a touch gesture).

The example in Figure 1 shows many of these techniques; it
may be extreme for some tastes, but, as mentioned above, the
way program features are shown in the compact representation
must be individually configurable, for the preferences of each
developer and also based on screen size. This particular pre-
sentation of the program should be thought of as an example
of how Deverywhere can be customized rather than as the
definitive output format. The figure shows the code separated
into three parts, each of which fits the size of a reasonable
smartphone.

This code of example is taken from the University of
Texas CS307 course of 2011 (https://www.cs.utexas.edu/
∼scottm/cs307/javacode/codeSamples/LinkedList.java), and
implements a linked list. It has not been modified in any way
except for the presentation, and the intent is for the code
kept in the source-control repository to be the same as the
original.

This example demonstrates many possible features of com-
pact representations of programs. Names of enclosing classes
and methods appear on the bar that also serves for the indenta-
tion, unless the bodies are very short. Many language elements
are omitted (comments, types, keywords such as class and
return, empty pairs of parentheses, and symbols such as
statement terminators and braces); others have been replaced
by short notation (+ and - for public and private, the
equivalence symbol for ==, arrows for ++ and --, and special

notation for constructors, conditionals, and loops). Background
colors are used to show scopes (shades of blue for classes and
methods, green for the then and red for the else part of
conditionals); the scope of a constructor is denoted by the
extent of the crane symbol. Note that class and method names
appear at the start of every relevant screen, not just at the
beginning of their scopes.

Templates have been used in several places to make code
more concise (and perhaps also more readable). Getters and
setters have been compressed to look like field reads and
writes, as is done in several languages (but not in Java). The
common mathematical idiom 0 ≤ x < s is used instead
of the cumbersome notation that uses a conjunction of two
inequalities. The same notation is used here for loop bounds,
in the (very common) case of a unit increment.

Conditionals are shown here using the same block structure
as classes and methods, except for the colors used to denote the
different branches. One exception, demonstrating a somewhat
more conventional way of representing a conditional, appears
inside the remove method in part (b). This notation is similar
to the three-way conditional expression of Java, but uses a
different symbol to denote that it is a statement rather than an
expression.

Loops are shown with a circular watermark that denotes the
scope, and a special symbol (∀) to indicate the loop control.
This is perhaps the most unusual notation we show in this
paper; while it may be chosen by few developers, we use it to
show the variety of notation that can be used for a compact
representation of programs.

The last method, toString(), is different from the other
parts of this example. In some cases, it is useful to show some

documentation (perhaps, but not necessarily, the Javadoc)
instead of the method body. This offers a very concise view
that shows the intent without the implementation; this is often
very useful.

Other possibilities, not shown in this example, include auto-
matically inlining a value that is only used once provided the
resulting expression is not too large; this could have been done
(twice) for newNode in part (c). Existing Eclipse templates,
such as expanding sysout to System.out.println, can
be used in reverse to compact programs that use the expansions
of such templates. This can be extended even further; for
example, given an analysis that converts imperative idioms to
functional ones, such as LambdaFicator [6], the view can show
the functional form without changing the underlying program.

As can be seen from this example, the representation is
sometimes ambiguous. This seems to us to be acceptable, since
the meaning will in most cases be obvious from the context.
In any case, the developer will always be able to ask to see
more details (perhaps by touching locations for which more
information is desired).

Program slicing, and especially Fine Slicing [1], is a very
effective technique for showing a small part of the code that is
relevant to a particular purpose. When browsing code, slicing
can be used to prevent the need for a lot of scrolling. The
program view would normally consist of a single method,
possibly with some context given as a breadcrumbs view. In
some cases, it is useful to show enclosing conditionals and
loops, but without intervening details; this is a kind of poor-
man’s slicing that is more easily implemented.

IV. ROADMAP

In order to map the requirements and possibilities of devel-
opment on limited platforms, we performed several dictation
experiments where the speaker tried to dictate a program as
naturally as possible, and the writer attempted to understand
as literally as possible. In addition, we studied previous work
on mobile programming environments [5], [7], compact repre-
sentations [3], [8], [9] and dictation [2], [4], and abstractions
used by various programming languages.

Previous work on mobile programming environments [5],
[7] has focused on new languages that are more natural for
the mobile environment. In contrast, we believe that such
new languages will have very limited use, mostly for small
applications. Professional development will continue to be
done in more established languages, and a mobile solution
for professional programmers should support these languages
without requiring changes in the underlying technology.

We found many interesting ideas in Intentional Software
[9] and registration-based abstractions [3], [8], which have
discussed multiple views of the same underlying program.
VoiceCode [4] and Spoken Java [2] focus on voice entry of
programs. Deverywhere combines voice input with a compact
presentation using the same set of templates.

The results of our study are several lists and relationships.
One list contains features that a mobile programming environ-
ment can support; in addition to those discussed above, the list
includes items such as the automatic application of quick fixes,
renaming conflicting elements, extension methods [10], and
two-dimensional expressions (as in mathematics). A second
list contains features for compact representation; a third lists
features for voice input; and a fourth lists configuration modes,
such as the use of typographic styles, layouts, frames, and
watermarks. We also created a matrix relating input and output
options with the various ways each of these can be shown; this
will be the basis for the developer-specific customization.

V. CONCLUSION

Deverywhere relies on templates that have information
about their structure that supports flexible voice input and
various types of compact representations. Customizability is
crucial to support different personal styles as well as different
sizes and capabilities of programming environments.

Once fully implemented, Deverywhere has the potential to
make programming on devices with limited user interfaces,
such as mobile phones and tablets, much more convenient
than they are now. This will allow developers to work more
comfortably in environments in which programming was very
difficult.

These techniques can also provide enormous help to de-
velopers who have various kinds of disabilities that prevent
them from using existing interfaces on laptop and desktop
environments effectively. In fact, we conjecture that many
developers would enjoy having the benefits of Deverywhere
as additions to their normal working environments.

REFERENCES

[1] A. Abadi, R. Ettinger, and Y. A. Feldman. Fine slicing: Theory and
applications for computation extraction. In Proc. 15th Int’l Conf.
Fundamental Approaches to Software Engineering (FASE), pages 471–
485, Mar. 2012.

[2] A. Begel and S. L. Graham. Spoken programs. In IEEE Symp. Visual
Languages and Human-Centric Computing, pages 99–106, Sept 2005.

[3] S. Davis and G. Kiczales. Registration-based language abstractions.
In Proc. ACM Int’l Conf. Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA), pages 754–773, 2010.

[4] A. Désilets, D. C. Fox, and S. Norton. VoiceCode: An innovative speech
interface for programming-by-voice. In Extended Abstracts on Human
Factors in Computing Systems (CHI), pages 239–242, 2006.

[5] G. Essl. Mobile phones as programming platforms. In Programming
Methods for Mobile and Pervasive Systems (PMMPS), 2010.

[6] L. Franklin, A. Gyori, J. Lahoda, and D. Dig. LambdaFicator: from
imperative to functional programming through automated refactoring.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 1287–1290,
2013.

[7] S. Li, T. Xie, and N. Tillmann. A comprehensive field study of end-user
programming on mobile devices. In IEEE Symp. Visual Languages and
Human-Centric Computing (VL/HCC), pages 43–50, September 2013.

[8] J.-J. Nunez and G. Kiczales. Understanding registration-based abstrac-
tions: A quantitative user study. In Proc. IEEE Int’l Conf. Program
Comprehension (ICPC), pages 93–102, 2012.

[9] C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In
Proc. 21st Annual ACM SIGPLAN Conf. Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 451–464, 2006.

[10] Xtend – modernized java. http://eclipse.org/xtend.

Appendix B

Acronyms

NLP Natural Language Processing

ASR Automatic Speech Recognition

STT Speech to Text

JSON (JavaScript Object Notation) is a lightweight data-interchange format

API Application Programming Interface

CFG Context Free Grammar

EBNF Extended Backus Naur Form

IDE Integrated Development Environment

149

Bibliography

[1] Andrew, B. (2011). Spoken Programs. PhD thesis, Computer Science Division, EECS Univer-

sity of California, Berkeley.

[2] Ben, F. and Casey, R. (2012). https://processing.org. Last accessed on Oct 16, 2015.

[3] Ben-Haim, E. (2011). Temporal abstractions analysis and reimplementation. Master’s thesis,

IDC Hertzliya Efi Arazi School of Computer Science.

[4] Dennis, S. and Hans, K. (2012). http://www.android-ide.com/tutorials.html. Last

accessed on Sep 22, 2015.

[5] Eisenberg, A. D. (2008). Presentation Techniques for more Expressive Programs. PhD thesis,

The University Of British Columbia.

[6] Feldman, Y. A. (2013). Template-based development on mobile platforms.

[7] Feldman, Y. A., Gam, A., Tilkin, A., and Tyszberowicz, S. S. (2015). Deverywhere: Develop

software everywhere. In 2015 2nd ACM International Conference on Mobile Software Engi-

neering and Systems, MOBILESoft 2015, Florence, Italy, May 16-17, 2015, pages 121–124.

[8] Graham, S. L. (2015). Harmonia research project. http://harmonia.cs.berkeley.edu/

harmonia/index.html. Last accessed on Sep 22, 2015.

[9] ISO/IEC (1996). Iso/iec 14977 : 1996(e), extended Backus Naur form (EBNF) a standard

syntactic metalanguage.

150

https://processing.org
http://www.android-ide.com/tutorials.html
http://harmonia.cs.berkeley.edu/harmonia/index.html
http://harmonia.cs.berkeley.edu/harmonia/index.html

BIBLIOGRAPHY 151

[10] Li, S., Xie, T., and Tillmann, N. (2013). A comprehensive field study of end-user program-

ming on mobile devices. Technical Report TR-2013-3, North Carolina State University De-

partment of Computer Science, Raleigh, NC.

[11] Mey, G. D. (2015). Google Speech API v2. https://github.com/gillesdemey/

google-speech-v2/blob/master/README.md. Last accessed on Sep 22, 2015.

[12] Michal, G. and David, H. (2009). Programming in natural language. Int. Conf. on Compu-

tational Linguistics and Intelligent Text Processing, pages 456–467.

[13] Nuance, D. (2015). Nuance dragon. http://www.nuance.com/for-developers/dragon/

index.htm. Last accessed on Sep 22, 2015.

[14] Parr, T. (2012). The Definitive ANTLR 4 Reference. The Pragmatic Programmers, LLC.

[15] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,

Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and Vesely, K. (2011). The Kaldi

Speech Recognition Toolkit. IEEE Signal Processing Society. IEEE Catalog No.: CFP11SRW-

USB.

[16] Rudd, T. A voice recognition system with Python embedded in it. http://pyvideo.org/

video/1735/using-python-to-code-by-voice. Last accessed on Sep 22, 2015.

[17] Schulz, F. (2015). Speech to text library for Java/processing. http://stt.getflourish.

com/archive/. Last accessed on Sep 22, 2015.

[18] Wirth, N. (1977). Modula: A language for modular multiprogramming, volume 7. Software-

Practice and Experience.

https://github.com/gillesdemey/google-speech-v2/blob/master/README.md
https://github.com/gillesdemey/google-speech-v2/blob/master/README.md
http://www.nuance.com/for-developers/dragon/index.htm
http://www.nuance.com/for-developers/dragon/index.htm
http://pyvideo.org/video/1735/using-python-to-code-by-voice
http://pyvideo.org/video/1735/using-python-to-code-by-voice
http://stt.getflourish.com/archive/
http://stt.getflourish.com/archive/

	Preface
	Acknowledgment
	Abstract
	Introduction
	Background
	Problem Formulation
	Literature that we Used
	Objectives
	Limitations of the Approach
	Approach
	Contribution
	Structure of the Report

	Experiments
	Introduction
	Experiments
	Experiment No.1
	Experiment No.2
	Experiment No.3
	Experiment No.4
	Experiment No.5

	Commands Repository
	Administration commands
	I/O
	Navigation
	Exit
	Expression
	Collections
	Conditions
	Return
	Call
	Delete
	Change/Modify
	Inheritance/Implementation
	Create

	Supported Features
	Introduction
	List of Features
	Programming by Voice (writing)
	Navigation by Voice
	Editing by Voice
	Compact View Mode
	Refactoring
	Object Identification
	Temporal Abstraction
	Details on Touch
	Changing the View Mode
	Fish Eye
	Quick Fix
	Dictation User Experience and Error Correction
	Undo, Redo
	Templates and Concise commands
	Save the Program as Regular Source Code
	Support multiple source files for analyzing
	Search
	Source control integration
	Stand Alone System
	Multi Platform
	License
	Show Time Complexity of Methods
	Command Variability
	Programming Languages Support
	Recommendations System
	Duplication Handling
	String Construction by Voice
	Integration with Future Technologies
	Auto Identifier Names Generation
	Extension Methods
	Multiple Views
	Breadcrumbs (Presence in Classes)
	Getters and Setters Identification
	Omit Declaration Lines
	Operator Overloading
	Lambda expression
	Type Inference
	Source Code on Demand
	Collaboration
	Native representation
	Inter-procedural Flow
	Annotations

	Compact Representation
	Introduction
	Operators
	Basic Operators

	Statement Terminators
	Mathematical Expressions
	Boolean expressions
	Range

	Scopes
	Scope Brackets
	Frame
	Indentation
	Line Break
	Fill

	Accessibilities
	Implementation and Inheritance
	Types
	Style
	Text Value
	Omit Types

	Fields
	Methods
	Omit Returned Type
	Omit Types of Formal Parameters
	Omit Parentheses
	Constructors

	Control Blocks
	If Statements
	Switch

	Temporal Abstraction
	Loops
	Temporal Abstraction
	Imperative Representation

	System Methods
	Layouts
	Tiles
	Breadcrumbs
	Inter-procedural Flow

	Example

	Configuration of Representation
	Introduction
	Configuration scope
	Configuration Main Settings
	Features and Configurations

	Programming in Natural Language
	Introduction
	Configuration
	Natural Language Processing
	Speech To Text Engines
	Context Free Grammar
	Dictation Parser
	Parser
	Lexer
	Grammar Testing

	Implementation

	A Prototype Tool
	Introduction
	Speech to Text
	Google Speech V2 Server
	Speech to Text Library
	Testing the Module

	BNF Parser

	Summary
	Publications and Talks
	Advanced Software Tools Seminar in The Blavatnik School of Computer Science in Tel-Aviv University
	MobileSoft 2015 Conference

	Acronyms
	Bibliography

