
2006 © 1

The EasyCRC Tool

Draft version

1. Introduction
This paper presents the results of an effort to automate the process of defining classes
from a written, “plain language” description of a system via CRC cards. We have created
a tool to analyze text, to help find objects within it, to create CRC cards from the objects,
and to help find the responsibilities of each of the items through sequence diagrams.
We have identified the need for a good tool to help students in OOSE courses. During
OOSE courses, students are exposed to a plethora of new ideas and frequently have
difficulty preparing assignments: identifying the cards from the requirements text,
describing the scenarios simulations as use cases, and identifying the responsibilities and
collaborators. This made the need for an efficient automating tool apparent.
Associating common nouns with data types makes the notion of data types more intuitive.
Most people possess an intuitive understanding of common nouns [11].
We reviewed different tools that have the capability of editing CRC cards and creating
other diagrams. We concluded that of the available tools that exist today, none enable the
user to follow a productive CRC card method that will take the user all the way from a
written “plain language” description to a complete set of CRC cards capable of being
transformed into the appropriate classes. In most tools, the CRC card diagram seems to
be detached from the other diagrams.
There is a need for a course design tool, specifically for students of OOSE, which can be
used in the early stages of the design process. The tool must be easy to use, intuitive, to
ensure that students’ time is optimized in learning OOSE design, not spent on learning
how to use the tool. In addition, the tool must be able to export its product to an XML
format, allowing for interoperability with other tools.

1.1. About CRC Cards

1.1.1. Conceptual Overview
A CRC card is an index card used to represent the responsibilities of classes and the
interaction between classes. CRC cards are an informal approach to object oriented
modeling. The cards are created through scenarios, which model the behavior of the
system based on the system requirements.

2006 © 2

1.1.1.1. Why Use CRC Cards?

“CRC cards are portable; no computer is required for anytime, anywhere use.
This allows participants to experience how the system works firsthand. No software tool
can replace the interaction that happens by physically picking up the cards and playing
the role of that object.
They are a useful tool for teaching people the object-oriented paradigm. They can be used
as a methodology themselves or as a front end to a more formal methodology such as
Booch, Wirfs-Brock, Jacobson, etc.
Although CRC cards have mainly been invented for teaching, they have proven useful for
much more. They became an accepted method for analysis and design. The biggest factor
in their success is they provide an informal and non-threatening environment that is
productive to working and learning.” [3]

CRC cards have been adopted by many educators to teach early design in their object-
oriented programming courses. [1]

Though CRC cards indeed can be used manually, we believe that a computer program
could assist the CRC card user. When a complex system is analyzed, it becomes
increasingly difficult to track all the data gathered and its context. A computerized tool
could check and prevent different types of design errors, as we will show in chapter 3.
Such a tool could facilitate updating all the cards when adding subclasses to a class (card)
or deleting a class (card); tasks which are daunting and ridden with failure-points when
done manually.

1.1.2. Introduction to CRC Cards and Role Play
A CRC card corresponds to a class. It describes the properties that certain types of objects
of interest in the problem/application domain have in common. A class should have a
single and well-defined purpose that can be described briefly and clearly. It should be
named by a noun, noun phrase, or adjective that adequately describes the abstraction. The
class name is written across the top of the CRC-card. A short description of the purpose
of the class is written on the back of the card.

A responsibility is something the objects of a class take care of; a service provided for
other objects. A responsibility can be either to know something or to do something. A
book object in a library, for example, might (among other things), be responsible for
checking itself out, knowing its title and knowing whether it is on loan. To do something,
an object usually uses its (local) knowledge. If this knowledge is not sufficient for the
purpose, the object can require help from other objects (its collaborators; see below). The
responsibilities of a class are written along the left side of the card.

The collaborators describe which kinds of objects can be asked for help to fulfill a
specific responsibility. An object of a collaborator class can, for example, provide further
information, or actually take over parts of the original responsibility (by means of the

2006 © 3

collaborator’s own responsibilities). A book object for example can only know whether it
is overdue if it also knows the current date. As shown in Figure 1, this information is
provided by the collaborator date. Collaborators are written along the right side of the
card in the same row as the corresponding responsibility.

The back of the card can be used for the class’ description, comments and miscellaneous
details.“ [1]

Sequence diagrams are effective alternatives for describing a role-playing session. The
parts of the use case are essentially the subtasks considered in the CRC card session; and
the labels on the interaction arrows are the responsibilities assigned to that object to carry
out various sub-tasks [4, page 97].

The rest of this paper is organized a follows:
Chapter 2 - reviews existing CRC cards edit tools.
Chapter 3 - presents our tool and describes how to use it.
Chapter 4 -presents our conclusions.

2006 © 4

2. Related work
We have tried to review as many tools as were available through the internet and other
resources. In this section, we will present only tools with the capabilities to design and
edit CRC cards. The tools we found can be divided into two major groups – commercial
tools and free\academic tools. Not all the tools were tested, because some of them were
not available. The software versions we used were free or the trial versions; this limited
our observations.

2006 © 5

2.1. Commercial Tools

2.1.1. Visual Paradigm
Visual Paradigm for the Unified Modeling Language (VP-UML) is a UML CASE tool.
The tool is designed for a wide range of users, including Software Engineers, System
Analysts, Business Analysts and System Architects interested in building reliable, large
scale software systems through the use of the Object-Oriented approach. VP-UML
supports the latest standards of Java and UML notations and provides the industry's full
round-trip code generation and code reverse engineering support for Java.
In addition, VP-UML is integrated with Eclipse/IBM WebSphere®, Borland®
JBuilder®, NetBeans IDE/Sun™ ONE, IntelliJ IDEA™, Oracle JDeveloper and BEA
WebLogic Workshop™ to support the implementation phase of software development.
The transitions from analysis to design and then to implementation are seamlessly
integrated within the CASE tool, thus significantly reducing efforts in all stages of the
software development lifecycle. [8]

Visual paradigm is a simple diagram tool. The CRC diagrams in the tool are not linked to
the sequence diagrams and there isn’t any other way to “do scenarios.”

2006 © 6

2.1.2. QuickCRC for Windows
QuickCRC is a software design tool ensuring the responsibility driven design of object-
oriented software. CRC cards are used to discover and document classes, responsibilities,
attributes and collaborations between classes. They are popular among developers using
agile methods or as a front end to the UML modeling notation [7].

 A screen shot of QuickCRC
We were unable to download the tool.
The responsibilities found in the scenarios are linked to the CRC cards.
Based on [6], the tool has the following features which are relevant to our paper:
� A scenario can call sub-scenarios.
� CRC cards can be grouped by function.
QuickCRC can also perform error checks to locate design problems. For example,
responsibilities that are not used in any scenarios may indicate that the design is
incomplete or perhaps the responsibility isn't needed. Likewise, a card not used by any
collaboration is not needed.

2006 © 7

2.1.3. Rose CRC
From [5]

2006 © 8

2.2. Free\Academic

2.2.1. ECODE

Ectropic Design is a collaborative design method, patterned on Open Source software
development, by which order and structure are created from the efforts of multiple,
potentially unrelated, software developers - a feature-oriented design method.
Software evolves ectropically [1] through the continuous augmentation of its features,
bound to specific program goals. These evolving features are defined in terms of the end-
user goals the features achieve and how the features interact, both statistically and
dynamically, with other features. Ectropic Design facilitates the development of software
by multiple, unrelated developers working concurrently. By binding source code and
collaboration technology to indented program goals, Ectropic Design provides developers
with the necessary mechanisms to enhance software continuously, while maintaining the
conceptual integrity of the program [10].

2006 © 9

2.2.2. The CRC Design Assistant

The CRC Design Assistant was first conceived to assist students in creating real-world
software applications in the context of the software engineering course at UTEP. Few of
the students had the experience needed to construct an efficient modular design.
Specifically, students have difficulty visualizing the design, tracking design changes,
maintaining the list of system responsibilities when classes are removed, revising
documentation when designs change, and presenting a design to other team members and
observers. The purpose of this tool is to help alleviate these problems. The key
requirements of the system are:

� The system must support the CRC design method and assist students in creating,
modifying, and documenting.

� Object-oriented designs.
� The system must support a team environment and be accessible over the internet.
� The system must be able to track changes made by each team member.
� The system must automatically generate design documentation in the form of

RTF files and diagrams.
� The entire design must be stored in a single database.
� The system must be easy to maintain.
[9]

2006 © 10

3. The "Easy CRC" Tool
Our study began with an actual need for a computerized tool that can be used by students
during the OOSE design courses. We wanted to follow the process as described in [5]
from the first stages of finding the objects from a definition test; then to the use of CRC
cards to mimic sequence scenarios to the stage of class definition from the CRC cards;
then to the export of the results, to be edited through more advanced tools. The CRC card
use is usually in the first stages of the design process – the stage where the user identifies
the base objects, responsibilities and methods of the objects. We wanted a tool that will
help the student with these complex tasks, but will not be too complicated, to be used
easily with little time spent on learning how to use it.

The use of the tool is splintered into two major stages – identifying the objects (CRC
cards) from plain text and then identifying the collaborators and responsibilities by
simulating scenarios through sequence diagrams.

3.1. Identifying Object from a Language Description
One of the issues that interested us in our efforts is a subject that was surveyed before by
Abbott [11] – program design by informal plain language description.

We wanted to try to automate the process as much as possible, though it was clear the
process couldn’t be completely automated. Such a holistic automation would require that
the computer be able to conceptually understand the requirements text, and this is a task
much larger than the scope of our study.

Our idea was to identify the nouns in the text and then offer the user of the tool a
convenient method for selecting which of the discovered nouns are relevant and which
are irrelevant.

Associating common nouns with data types makes the notion of data types more intuitive.
Most people already have an intuitive understanding of common nouns [11].

3.1.1. Deciding Which Word is a Noun
A challenge of this stage was to “sort out” the noun words from other words in the
requirement text.

We found that the most effective method was to refer to a dictionary. Thus, we started by
querying internet-based dictionaries. The first dictionary we used was the web site
dictionary.com. The problem with dictionary.com, is that it is only in English; and we
wanted to support text analysis in additional languages, such as Hebrew. Therefore, we
found a web-based multi-language dictionary at the web site babylon.com. After trying
to use it to query each word in the text, we discovered that, because of our too frequent

2006 © 11

queries, the site seemed to crash – an unexpected and unwanted result. Moreover, the
problem with web-based queries is that they take a lot of time. When the input is a rather
long text, it can take such an unreasonable amount of time that the tool would be
unusable.

A second approach to finding the nouns was to use a dictionary that already exists on the
computer. Surprisingly, we found an existing dictionary that comes with every copy of
MS Word. The Hebrew-English dictionary included with the Hebrew version of MS
Word contains the classification if a word is a noun for each word in the dictionary. The
dictionary is stored in plain XML format on the computer and we found it very easy to
access. The dictionary seems to be exactly the same dictionary as in the website
morfix.co.il. We didn’t find any definition in the license of MS Word prohibiting us from
using the dictionary in this manner, as long as a valid version of MS Word is installed on
the computer. When using the MS Word dictionary, the noun classification process time
was dramatically decreased to an almost instant processing, even for relatively long texts.

Because the MS Word dictionary only contains the words in “plain” state, we added
handling of “ing” and “s” roles to find more nouns in other states.

3.1.2. Deciding Which Noun is an Object
At this stage, with the help of the tool, a long list of nouns is discovered and is displayed
to the user [see figure 1]. The user needs to decide for each noun if it is a relevant object
or not. To help the user better understand if the noun is an object or not, the tool will
provide two methods to help.

When a noun is selected in the list, a window appears, containing the word within the
text, within the line, along with preceding text and following text. This makes it easier for
the user to see all the occurrences of the word [see figure 1].

The dictionary definition of the word is displayed in a small window to help with the
meaning of the word.

2006 © 12

3.2. CRC Card Diagram Editing
CRC card editing is one of the main parts of our study. The goal was to develop a
graphical, easy-to-use diagram building tool enabling students to create CRC card
scenarios in a manner similar to textbook CRC creation.

3.2.1. Card Editing
Editing the CRC cards using the CRC card editor can be done in different ways.
One method is to enter all information manually - editing the different values through the
property editor in the tool. Right-click the “CRC cards” node in the solution explorer; a
sub menu will be displayed with an option to add an item to the sub tree below. In this
manner the user can Assign Responsibilities, Add Attributes, Add Methods to
responsibilities and set the different properties of the item.
Another way is to create sequence diagrams and from them, the collaborators and
responsibilities of the CRC cards would be discovered automatically.

3.2.2. Building Sequence Diagrams
With the tool, we first add objects in the scenario, and then we start to add the messages
between the objects. For every message, there is an option to add a responsibility to the
source card.

3.2.3. Exporting Data to XMI
XMI (XML Metadata Interchange) is an OMG standard for exchanging metadata
information via XML. It can be used for any metadata whose metamodel can be
expressed in MOF. The most common use of XMI is as an interchange format for UML
models, although it can also be used for serialization of models of other languages
(metamodels).

Most common UML editing software like Visual Paradigm, Argo UML, Enterprise
Architect and Poseidon for UML support export and import of UML through XMI
formatted files.

2006 © 13

XMI is the common base for UML data export, so it was one of our objectives to export
the results to XMI format. Different UML editing tools export data to the XMI format
differently. We exported the data in the way that Visual Paradigm can import, as it is the
best tool, in our opinion, for an academic course because of its features, its support for
CRC cards and its free academic software licenses.

The CRC card diagram export is missing from the XMI format is. We recommend adding
it to the standard.

2006 © 14

3.3. Case Study
In this chapter we will describe the use of "Easy CRC" by means of a case study. This
case study is an analysis of a simple library example. The example is taken from [4,
chapter 3].

3.3.1. The Problem
This text is taken from [4, page 48]:
“The application will support the operations of a technical library for an R&D
organization. This includes searching for and leading of technical library materials,
including books, videos, and technical journals. Users will enter their company ids in
order to use the system; and they will enter material ID numbers when checking out and
returning items.

Each borrower can be lent up to five items. Each type of library item can be lent for a
different period of time (books 4 weeks, journals 2 weeks, videos 1 week). If returned
after their due date, the library user’s organization will be charged a fine, based on the
type of item (books $1/day, journals $3/day, videos $5/day).

Materials will be lent to employees with no overdue landaulets, fewer then five articles
out, and total fines less then $100.”

According to the book, the set of classes found in the session are: Librarian, Lendable,
Book, Video, Journal, Date, Borrower, and User [4, Page 52].

3.3.2. Finding Classes From the Text
We paste or type the text into the “text” edit box in our tool.

2006 © 15

2006 © 16

Then, we click the “Get all the words” button to get a list of all the unique words in the
text to a list.

Then we click the “Get Nouns” button to filter only the nouns from the word list. There
are three methods to get the nouns: two methods take them from web sites and one uses
the MS Word dictionary (Office). We will use the Word dictionary, because it is fastest.

Next, we sort the nouns list for objects and irrelevant nouns.

� A small dictionary window gives the dictionary translation from all the
dictionaries installed with MS Office.

� A small text window will show all the references to the word in the text.

2006 © 17

� The occurrence of the word will be highlighted in the text window.

We can also highlight objects that were not found and add them to the list.

After the sorting, the following objects were found: Book, video, journal, data and user.

This method didn’t find the following objects: Librarian, Lendable, and Borrower
because they are not present in the text. They will be added manually later on.

To finish this stage, we click the “Create CRC cards” button.

Empty CRC cards will be created in the CRC card diagram in the tool.

2006 © 18

Next, we manually add the missing cards - Librarian, Lendable and Borrower.

The result will be like that:

2006 © 19

3.4. Building a Sequence Diagram
By building sequence diagrams, the user can mimic the scenario reenactment process that
takes place during the brain storming.

We will recreate the sequence diagram [4, page 96].

First we add a sequence diagram to the sequence diagrams list.

We name it “check out.”

3.4.1. Creating the Objects for the Sequence
We add the five objects in the diagram, individually, to the objects node in the sequence
diagram.

The result will be like that:

3.4.2. Adding the Messages
We add the messages, individually, to the Messages node.

2006 © 20

Now, we select the source object from the Object list.

We select the destination object from the Object list.

2006 © 21

We can add the source responsibility by typing its name in the destResponsibility
property.

A window opens to confirm creation of the new responsibility.

If the responsibility exists, it can be selected from a list.

If there is a superclass to the card, the hierarchy will be shown and we select which card
(one or more) the responsibility will be added to.

 In a similar way we can add a destination method to the destination responsibility.

2006 © 22

We can see the diagram being updated as we add the message.

A message can be defined as a “result” by changing the “result” attribute to true – this
will close the current activity of the object. The message line will be a broken line.

In this manner we add the rest of the messages. By doing so, we discover the
responsibilities and the collaborators.

2006 © 23

The responsibilities and collaborators were also added to the CRC cards.

2006 © 24

We will repeat the process for all the scenarios as sequence diagrams.

2006 © 25

3.5. Advanced Sequence Messages

3.5.1. Loops
Loops can be defined in the sequence diagrams.
To create a loop in the sequence we need to add a start loop message and an end loop
message.

Here is a sample case. We start of with three messages.

Let’s say we want to loop the first two messages.

First, we add a start loop message

Then, we move the loop message to before the first message in the loop.

2006 © 26

We add a loop end under the last message in the loop.

We add the operand to the loop start

2006 © 27

3.5.2. Case
A loop can be transformed into a case, by changing the operator type of the loop start.

 �

The operand will be the case condition.

Other cases operands may be added by adding “loop operand”.

2006 © 28

3.6. Export to Other Tools

3.6.1. Export to Visual Paradigm
Our tool has an option to export the data to the XMI format so it can be imported to
visual paradigm and other tools.

First, we select “Export to XMI” from the file menu in the tool.

Then, we open Visual Paradigm and import the XMI file (using their import command).

Because UML XMI format doesn’t support the CRC card export, we export the CRC
cards as classes.

The diagram below is the Visual Paradigm output when exporting the sample above.

2006 © 29

2006 © 30

3.6.2. Export to HTML
There is no common format that we found to support the export of a CRC card diagram.
To help students edit and deliver exercises that include CRC card diagram products, we
have to add an option to save the CRC card diagrams as HTML.

Here is a sample output:

 book
Description:

Remark:

Attributes:�

 book
superclass: Lendable

 Responsibility: Collaborator(s):
 Know if overdue
 Is overdue
 Know check out
 Check out

This card is used in the following sequence diagrams:

� check�out

Responsibilities used in sequence diagrams:

� Know if overdue

1. check out

� Know check out

1. check out

2006 © 31

 video
Description:

Remark:

Attributes:�

 video
superclass: Lendable

 Responsibility: Collaborator(s):

 journal
Description:

Remark:

Attributes:�

 journal
superclass: Lendable

 Responsibility: Collaborator(s):

2006 © 32

 date
Description:

Remark:

Attributes:�

 date
 Responsibility: Collaborator(s):
 Know compare
 Compare

This card is used in the following sequence diagrams:

� check�out

Responsibilities used in sequence diagrams:

� Know compare

1. check out

 user
Description:

Remark:

Attributes:�

 user
 Responsibility: Collaborator(s):

2006 © 33

 Librarian
Description:

Remark:

Attributes:�

 Librarian
 Responsibility: Collaborator(s):
 Know check out
 Check out
 Know enter book id
 Enter book id

This card is used in the following sequence diagrams:

� check�out

Responsibilities used in sequence diagrams:

� Know check out

1. check out

� Know enter book id

1. check out

2006 © 34

 Lendable
Description:

Remark:

Attributes:�

 Lendable
subclasses:
 book
 video
 journal

 Responsibility: Collaborator(s):

2006 © 35

 Borrower

Description:

Remark:

Attributes:�

 Borrower
 Responsibility: Collaborator(s):
 Can borrow
 Borrow

This card is used in the following sequence diagrams:

� check�out

Responsibilities used in sequence diagrams:

� Can borrow

1. check out

2006 © 36

check out

Actors:

� Library user���

Objects:

� Librarian���Librarian

� Borrower���Borrower

� Book���book

� Date���date

2006 © 37

4. Conclusion and Future Work
We envision that EasyCRC will help the students in the OOSE class to study and enable
them to understand the meaning of CRC cards use faster, thus providing a better design
of a system. Though the idea of CRC cards is very simple, students need extensive time
for proper use of them. We believe that tools like EasyCRC will help them to adapt the
CRC method.

This semester (Fall 2006) we have used the tool for the first time in three OOSE classes.
Based on their experience and remarks, we intend to modify and elaborate the first
version of the tool.
We would like also to enable running the scenarios as a simulation to enable an easier
checking of the correctness of the scenarios and hence of the analysis and design.
The tool will be open for use, and thus we hope that (1) it will be useful for a large group
of novice users, and (2) a larger community of users will help to add desired features
based on their remarks.

We also recommend that the XMI UML format will be extended to support CRC cards so
CRC cards analysis can be shared among tools.

2006 © 38

5. References
1. Börstler, J. and Schulte, C. Teaching object oriented modelling with crc-cards and

role playing games, Proceedings of the 8th IFIP World Conference on Computers
in Education (WCCE 2005), University of Stellenbosch, Cape Town SA, July,
2005). Available at http://www.inf.fu-berlin.de/inst/ag-
ddi/docs/CRCandRoleplayWCCE2005.pdf

2. Beck, K. CRC: Finding objects the easy way. Object Magazine 3(4): 42–44, 1993.

3. Object Oriented Analysis and Design using CRC Cards,

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/ , last visited
December 10, 2006.

4. Biddle, R., Noble, J. and Tempero, E. 2002. Reflections on CRC cards and OOSE

design. Proceedings Tools Pacific’02: 201–205.

5. Wilkinson, N. Using CRC Cards, An Informal Approach to Object-Oriented

Development. SIGS, New York, 1995.

6. QuickCRC, Introduction, http://www.excelsoftware.com/quickcrcintro.html, last
visited December 10, 2006.

7. QuickCRC, http://www.excelsoftware.com/quickcrcwin.html, last visited
December 10, 2006.

8. Visual Paradigm, http://www.visual-paradigm.com/, last visited December

10,2006.

9. Roach, S. and J. Vasquez, J., A Tool to Support CRC Design, Proceedings of the
International Conference on Engineering Education, Gainesville, Florida,
October, 2004. CRC Design Assistant Tool available at
http://www.cs.utep.edu/sroach/crcda.html, last visited December 10, 2006.

10. Ectropic Software, http://www-static.cc.gatech.edu/computing/ectropic/, Aug 18

2006, http://72.14.221.104/search?q=cache:MgqzvBY0XL0J:www-
static.cc.gatech.edu/computing/ectropic/+%22Imagine+hundreds+of+people+wor
king+on+the+same+program+at+the+same+time.+Imagine+%22&hl=en&ct=cln
k&cd=1

11. Abbott, R. J., Program design by informal English descriptions, Communications

of the ACM, 26 (11): 882 – 894, November 1983.

12. Objects by Design, http://www.objectsbydesign.com/books/RebeccaWirfs-
Brock.html, last visited December 10, 2006.

