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1 Introduction

Let H = 〈V,S〉 be a hypergraph, where V is a set of vertices and S is a set
of not necessarily disjoint clusters (also known as hyperedges) S1, . . . , Sm,
Si ⊆ V for i ∈ {1, . . . ,m}. The Clustered Spanning Tree by Paths prob-
lem, denoted by CSTP , is to decide whether there exists a path-based tree
support, which is a tree spanning the vertices of V , such that each cluster
induces a path.

Since the majority of hypergraphs do not have a feasible solution tree, the
question of how to gain feasibility is of great importance. This paper focuses
on finding feasible solution trees by removing or inserting a minimum number
of vertices from or into the clusters of the given hypergraphs.

The main idea of this paper is to introduce a minimum feasible removal
list and a minimum feasible insertion list for a given hypergraph H. A feasi-
ble removal (insertion) list contains a list of vertices and clusters, such that
removing (inserting) those vertices from (into) the appropriate clusters cre-
ates a hypergraph with a feasible solution tree. We consider intersection
graph, whose nodes represent the clusters of the hypergraph and an edge ex-
ists between two nodes if and only if the corresponding clusters intersect. We
focus on cases where the intersection graph has a specific shape, specifically,
triangular base shapes, such as a diamond and a butterfly. The research
also deals with intersection graphs with special characteristics, where it is
easy to show that there is no feasible solution for the given hypergrah. For
example, an intersection graph which is a single chordless cycle, or an inter-
section graph with two chordless cycles connected by a separating edge or a
separating path of size three. We also consider cactus tree intersection graph
and triangle free intersection graph.

Throughout this paper, we assume that the intersection graph of H is
connected. Otherwise, a feasible solution tree of H can be constructed by
properly adding edges between the feasible solution trees of each connected
component, if they exist. Moreover, when no feasible solution tree exists, the
union of feasible minimum removal (insertion) lists of the various connected
components, creates a feasible minimum removal (insertion) list for the given
hypergraph.

Swaminathan and Wagner in [10] introduce a polynomial time algorithm,
which constructs a feasible solution tree for CSTP problem, if one exists.
Brandes et al. in [2] give a polynomial time algorithm that computes a feas-
bile solution tree for CSTP problem, if it exists. Their algorithm connects
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subpaths in a specific order using a special coloring of their end vertices.
A generalization of the CSTP problem is the Clustered Spanning Tree

by Trees problem, denoted by CSTT . This problem aims to decide whether
there exists a tree-based tree support, which is a tree spanning the vertices
of V , such that each cluster induces a subtree. Since CSTP is a special case
of CSTT , obviously the necessary and sufficient conditions presented in [8]
for the CSTT problem are necessary conditions also for CSTP problem, but
not sufficient.

Considering the feasibility question of CSTP, in [5] they break the in-
tersection graph of H into smaller instances, when the intersection graph
contains a cut node or a separating edge. They prove how the feasibility
question of every connected component may be used to decide whether the
original hypergraph has a feasible solution tree. In cases where a connected
component does not have a feasible solution, they consider changes of the
given hypergraph to gain feasibility.

An important known and more restricted version of the CSTP problem
is where the solution tree is required to be a path, such that every cluster
induces a subpath in the solution path. This is the feasibility vertsion of
the clasterd TSP problem. A solution to this problem can also be presented
as testing for the Consecutive Ones Property, denoted by COP. A binary
matrix has the COP when there is a permutation of its rows that gains
the 1’s consecutive in every column. In [1] Booth and Lueker introduce
a data structure called a PQ-tree. PQ-trees can be used to represent the
permutations of the vertices in V, such that the vertices of each cluster of S
are required to occur consecutively.

We would like to suggest a few possible applications for CSTP problem.
The first one comes from the area of communication networks and is pre-
sented by Tanenbaum and Wetherall in [11]. Given a complete graph where
each vertex represents a customer, each edge represents a link between two
customers, and there is a collection of not necessarily disjoint clusters of ver-
tices where each cluster represents a group of customers. The problem is
to construct a communication network in such a way that each cluster of
vertices from the given collection induces a path. When using a minimum
number of edges, the resulting network is a tree. Note that when no feasi-
ble solution tree exists, we consider removing some customers from some of
the groups, or inserting some customers into some of the groups, in order to
achieve feasibility.

An important use for CSTP problem, comes from the area of VLSI design,
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as is described by Johnson and Pollak in [6]. The vertices of the hypergraph
represent electric components and the clusters represent electric subcircuits
that should be wired together. The problem is to construct a hypergraph
in such a way that each cluster of vertices from the given collection induces
a path. For VLSI design it is also of most importance to gain proper hy-
pergraph visualization. Note that when no feasible solution tree exists, we
consider removing some components from some of the subcircuits, or in-
serting some components into some of the subcircuits, in order to achieve
feasibility.

This paper is organized as follows: Section 2 describes the connection
between the CSTP and CSTT problems. Section 3 contains definitions that
will be used throughout the work. Section 4 contains properties relevant
to all the paper. Section 5 deals with triangle intersection graph. Section
6 deals with diamond intersection graph. Section 7 deals with butterfly
intersection graph. Section 8 deals with windmill intersection graph. Section
9 deals with vertex connected triangle chain intersection graph. Section
10 deals with edge connected triangle chain intersection graph. Section 11
deals with one chorless cycle intersection graph. Section 12 deals with two
chordless cycles with a separating edge intersection graph. Section 13 deals
with two chordless cycles with a separating path intersection graph. Section
14 deals with triangular cactus intersection graph. Section 15 deals with
cactus intersection graph. Section 16 deals with the triangle free intersection
graph.

2 CSTP Versus CSTT

Consider the general following problem: Let H = < V, S > be a hypergraph,
where V is a set of vertices and S = {S1, . . . , Sm} a set of not necessarily
disjoint clusters, Si ⊆ V, for 1 ≤ i ≤ m . The Clustered Spanning Tree by
Trees problem, denoted by CSTT, is to decide whether there exists a tree
spanning the vertices in V , such that each cluster induces a subtree.

Definition 2.1. A chordless cycle in a graph is a cycle with at least four
vertices, which does not contain any chord. A graph is chordal when it does
not contain any chordless cycle.

Definition 2.2. Let S = {S1, . . . , Sm} be a family of subsets. S satisfies
the Helly Property if the following holds: For every S ′ ⊆ S, if every pair
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members of S ′ has a common element, then all the members of S ′ have a
common element. In other words, if every Si, Sj ∈ S ′ satisfy Si∩Sj 6= ∅ then⋂
Si∈S′ Si 6= ∅.

The CSTP problem is in fact a restricted case of CSTT, as paths are a
restricted case of trees. For the CSTT problem, it is proved in [3], [4], [9] and
summarized in [8], necessary and sufficient conditions for a feasible solution.

Theorem 2.3. A hypergraph H = < G,S > has a feasible solution tree by
trees if and only if H satisfies the Helly property and its intersection graph is
chordal.

Since CSTP is a special case of CSTT, the above theorem gives necessary
conditions for CSTP, but not sufficient.

Throughout this work we assume H satisfies the Helly property, otherwise
it is clear that H does not have a feasible solution tree by paths.

3 Definitions

In this section we introduce definitions that are used throughout the work.

Definition 3.1. Let H =< V,S > be a hypergraph with vertex set V and S
= {S1, . . . , Sm} a set of not necessarily disjoint clusters. The intersection
graph of H, denoted by Gint(S), is defined to be a graph whose set of nodes
is {s1, . . . , sm}, where si corresponds to Si, for i ∈ {1, ...,m}, and an edge
(si, sj) exists if Si

⋂
Sj 6= ∅ .

Definition 3.2. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of not necessarily disjoint clusters. Let S ′ ⊆ S
be a set of clusters. We define G[S ′] to be the graph whose vertex set is
V (S ′) =

⋃
Si∈S′ Si and cluster set is S ′.

Definition 3.3. Given a tree T which spans the vertices of V , the subtree of
T induced by V ′, for V ′ ⊆ V , denoted by T [V ′], is defined to contain all the
vertices of V ′ and all the edges of T whose both endpoints are in V ′.

Definition 3.4. v∗ is a cut node of a connected graph G if G contains node
v∗ and deleting v∗ from G disconnects G into ξ connected components, for
ξ ≥ 2.
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Definition 3.5. Let H =< V,S > be a hypergraph with vertex set V and S
= {S1, S2, S3} a set of clusters. A triangular intersection graph of H,
is an intersection graph whose nodes set is {s1, s2, s3}, and its edges set is
{(s1, s2), (s1, s3), (s2, s3)}.

Definition 3.6. Let H =< V,S > be a hypergraph with vertex set V and S
= {S1, S2, S3, S4} a set of clusters. A diamond intersection graph on
S1,S2 of H, is an intersection graph whose nodes set is {s1, s2, s3, s4}, and
its edges set is {(s1, s2), (s1, s3), (s1, s4), (s2, s3), (s2, s4)}.

Definition 3.7. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of clusters. A butterfly intersection graph on
S1,S2 of H, is an intersection graph whose nodes set is {s1, s2, ..., sm} and
its edges set is {(s1, s2), (s1, si), (s2, si) | i ∈ {3, ...,m}}.

For i ∈ {3, ...,m}, a wing in a butterfly intersection graph on S1, S2, is
a sub-graph of the intersection graph, whose nodes set is {s1, s2, si} and its
edges set is {(s1, s2), (s1, si), (s2, si)}.

Definition 3.8. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of clusters. A windmill intersection graph on
S1 of H, is an intersection graph with m−1

2
triangular intersection graphs

connected by one node which is s1.

Definition 3.9. Let H =< V,S > be a hypergraph with vertex set V and S
= {S1, . . . , Sm} a set of clusters. A vertex connected triangular chain
intersection graph of H, is defined to be an intersection graph with m−1

2

triangular intersection graphs. Each triangular is connected to its neighbors
by one different node.

Definition 3.10. Let H =< V,S > be a hypergraph with vertex set V and S
= {S1, . . . , Sm} a set of clusters. An edge connected triangular chain
intersection graph of H, is defined to be an intersection graph with m− 2
triangular intersection graphs. Each triangular is connected to its neighbors
by one different edge.

Definition 3.11. Let H =< V,S > be a hypergraph with vertex set V and S
= {S1, . . . , Sm} a set of clusters. A chordless cycle is a cycle with at least
four nodes, which does not contain any chords.

Definition 3.12. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of clusters. A two chordless cycles with a
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separating edge intersection graph of H, is defined to be an intersec-
tion graph which contains a separating edge (s1, s2), whose removal of nodes
{s1, s2} and edge (s1, s2) creates two connected components corresponding to
the clusters collections Sa,Sb. However, the intersection graph remains con-
nected if we remove only one of the vertices s1 or s2.

Definition 3.13. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of clusters. A two chordless cycles with a
separating path intersection graph of H, is defined to be an intersection
graph which contains a separating path (s1, ..., st), where t ≥ 3, whose removal
of nodes {s1, ..., st} and all edges related to these nodes creates two connected
components corresponding to the clusters collections Sa,Sb. However, the
intersection graph remains connected if we remove only one of the vertices
s1, ..., st.

Definition 3.14. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of clusters. A cactus intersection graph of H,
is an intersection graph which is a connected graph in which any two simple
chordless cycles have at most one node in common.

Definition 3.15. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of clusters. A triangular cactus intersection
graph of H, is a cactus intersection graph such that each cycle has length
three.

Definition 3.16. Let H =< V,S > be a hypergraph with vertex set V and
S = {S1, . . . , Sm} a set of clusters. A triangle free intersection graph
of H, is a graph which does not contain any triangles. Hence, every cycle in
this graph contains at least 4 nodes.

Definition 3.17. For ∀ 1 ≤ i ≤ m, let Xi = Si \
⋃
{Sr | r 6= i,1 ≤ r ≤m},

Xi contains the vertices of Si that do not appear in any other cluster.

Definition 3.18. ∀ 1 ≤ i, j ≤ m, j 6= i, let Xi,j = (Si

⋂
Sj) \

⋃
{Sr | r 6= i, j,1 ≤ r ≤m},

Xi,j contains the vertices of the intersection of Si and Sj, that do not appear
in any other cluster.

Definition 3.19. ∀ 1 ≤ i, j, k ≤ m, different indices i, j, k, let Xi,j,k =
(Si

⋂
Sj

⋂
Sk) \

⋃
{Sr | r 6= i, j,k,1 ≤ r ≤m}, Xi,j,k contains the vertices of

the intersection of Si, Sj and Sk, that do not appear in any other cluster.
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Definition 3.20. ∀ 1 ≤ i, j, k, l ≤ m, different indices i, j, k, l, let Xi,j,k,l

= (Si

⋂
Sj

⋂
Sk

⋂
Sl) \

⋃
{Sr | r 6= i, j,k, l,1 ≤ r ≤m}, Xi,j,k,l contains the

vertices of the intersection of Si, Sj, Sk and Sl, that do not appear in any
other cluster.

Definition 3.21. Let H =< V,S > be a hypergraph, with S = {Si, Sj, Sk}
with a triangular intersection graph. H is a satisfied triangle on Si,Sj,
if at least one of the following holds:

1. |Xi,j,k| = 1.

2. |Xi,k| = 0.

3. |Xj,k| = 0.

Definition 3.22. Let H =< V,S > be a hypergraph, with S = {Si, Sj, Sk},
with a triangular intersection graph. H is a strongly satisfied triangle
on Si,Sj, if at least one of the following holds :

1. |Xi,j,k| = 1.

2. |Xi,j| = 0.

Definition 3.23. Let H =< V,S > be a hypergraph. RL is a removal list
of H if RL is a list of pairs: RL = {(v1, Si1), ..., (vk, Sik)} with vj ∈ Sij ,
such that if we remove for all the pairs in RL, vertex vj from cluster Sij , we
create a new instance of the hypergraph denoted by H \RL. If H \ RL has
a feasible solution tree we say that RL is a feasible removal list of H. If
RL is also of minimum cardinality (minimum value of k) we say that RL is
a minimum feasible removal list of H.

Definition 3.24. Let H =< V,S > be a hypergraph. IL is an insertion
list of H if IL is a list of pairs: IL = {(v1, Si1), ..., (vk, Sik)} with vj /∈ Sij ,
such that if we insert for all the pairs in IL, vertex vj to cluster Sij , we
create a new instance of the hypergraph denoted by H + IL. If H + IL has
a feasible solution tree we say that IL is a feasible insertion list of H. If
IL is also of minimum cardinality (minimum value of k) we say that IL is
a minimum feasible insertion list of H.

Note that a cluster may appear in the list a few times, each time with a
different vertex.
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Definition 3.25. Let H = 〈V,S〉 be a hypergraph. If RL = {(v1, Si1), . . . , (vk, Sik)}
is a removal list and S ′ ⊆ S is a set of clusters, we define the induced
removal list RL[S′] to be {(v, Si) | (v, Si) ∈ RL, Si ∈ S ′}. Denote by
RL[Si]= {v | (v, Si) ∈ RL}, the vertices removed from Si by RL.

Definition 3.26. Let H = 〈V,S〉 be a hypergraph. If IL = {(v1, Si1), . . . , (vk, Sik)}
is an insertion list and S ′ ⊆ S is a set of clusters, we define the induced
insertion list IL[S′] to be {(v, Si) | (v, Si) ∈ IL, v ∈ V, Si ∈ S ′}. Denote by
IL[Si]= {v | (v, Si) ∈ IL, v ∈ V }, the vertices inserted into Si by IL.

Definition 3.27. Let H = < V,S > be a hypergraph, with vertex set V and
S = {S1, . . . , Sm} a set of clusters. Let i, j, k ∈ {1, ...,m} be three different
indices. Choose v∗ ∈ Xi,j,k and let RLi,j,k = {(v,Si)|v ∈ Xi,j,k,v 6= v∗}, a
removal list that removes all vertices from Xi,j,k except for v∗. After removing
RLi,j,k from H, |Xi,j,k| = 1.

Definition 3.28. Let H = < V,S > be a hypergraph, with vertex set V
and S = {S1, . . . , Sm} a set of clusters. Let i, j ∈ {1, ...,m} be two different
indices. Denote RLi,j = {(v,Si)|v ∈ Xi,j}, a removal list that removes all
vertices from Xi,j. After removing RLi,j from H, |Xi,j| = 0.

Definition 3.29. Let H = < V,S > be a hypergraph, with vertex set V and
S = {S1, . . . , Sm} a set of clusters. Let i, j, k ∈ {1, ...,m} be three different
indices. Denote IL(i,j)+k = {(v,Sk)|v ∈ Xi,j}, an insertion list that inserts
all vertices of Xi,j to Sk. After inserting IL(i,j)+k to H, |Xi,j| = 0.

Definition 3.30. Let H = 〈V,S〉 be a hypergraph, define mRL(H)= min
{|RL| | RL is a feasible removal list }, the minimum cardinality of all feasible
removal lists.

Definition 3.31. Let H = 〈V,S〉 be a hypergraph, define mIL(H) = min
{|IL| | IL is a feasible insertion list }, the minimum cardinality of all feasible
insertion lists.

Definition 3.32. Let X− be the list of vertices of X after the removal by a
removal list.

Definition 3.33. Let X+ be the list of vertices of X after the insertion by
an insertion list.
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4 General Properties

In this section we introduce general properties that are used throughout the
work.

Lemma 4.1. Consider a hypergraph H =< V,S >. If T is a feasible solution
tree for CSTP problem and X is an intersection set of clusters from S, then
T [X] is a connected path.

Proof. Let X =
⋂k
j=1 Sij , where Sij ∈ S, and let {v, u} ⊆ X. It follows that

{v, u} ⊆ Sij ∀j ∈ {1, . . . , k}. Since T is a feasible solution tree for CSTP
problem, T contains a path between v and u, such that all the vertices in the
path are in Sij . Therefore, T contains a path between v and u, such that all
the vertices in this path are in X. Hence, T [X] is connected and therefore it
is a connected subtree of T . Furthermore, since T is a feasible solution tree
for CSTP problem, T [Si1 ] is a path which contains T [X], and therefore T [X]
is a connected path.

Lemma 4.2. ([5] ) Consider a hypergraph H =< V,S > with a connected
intersection graph Gint(S) and T a feasible solution tree. If Gint(S ′) is con-
nected for S ′ ⊆ S, then T [V (S ′]) is a feasible solution tree of H[S ′].

Remark 4.3. ([5] ) Consider a hypergraph H =< V,S > with a connected
intersection graph Gint(S) and T a feasible solution tree. If Gint(S ′) is not
connected, for S ′ ( S, then according to Theorem 4.2, T induces a feasible
solution tree on every connected component of Gint(S ′), and by adding edges
connecting these trees into a tree, a feasible solution tree of H[S ′] is achieved.

Lemma 4.4. ([5] ) Consider a hypergraph H =< V,S >. If RL is a feasible
removal list for H and Gint(S ′) is connected, for S ′ ⊆ S, then RL[S ′] is a
feasible removal list for H[S ′].

Lemma 4.5. Let H =< V,S > be a hypergraph, with vertex set V and
clusters set S = {S1, . . . , Sm}. If H has a feasible solution tree by paths,
let T be a solution tree. Let X ′,X ′′,X ′′′ be sets of intersections of clusters.
Let P ′, P ′′ and P ′′′ be paths in T which span the intersections X ′,X ′′,X ′′′,
respectively. If there exists Si ∈ (X ′∩X ′′)\X ′′′, then in any feasible solution
P ′′′ can not appear between P ′ and P ′′.

Proof. Suppose by contradiction that H has a feasible solution tree by paths,
and P ′′′ is connected between P ′ and P ′′. In this case, P [Si] is not connected,
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in contradiction with the assumption that H has a feasible solution tree by
paths.

Lemma 4.6. Let H =< V,S > be a hypergraph, with vertex set V and
clusters set S = {S1, . . . , Sm}. Let T be a feasible solution tree of H. Let
X ′,X ′′,X ′′′ be sets of intersections of clusters. Let P ′, P ′′ and P ′′′ be paths
which span the intersections of X ′,X ′′,X ′′′, respectively. If there is Si ∈ (X ′∩
X ′′ ∩X ′′′), then in any feasible solution there is no vertex v ∈ P ′ ∩P ′′ ∩P ′′′.

Proof. Suppose by contradiction, that H has a feasible solution tree by paths
and there is a vertex v ∈ P ′ ∩ P ′′ ∩ P ′′′. In this case, P ′, P ′′ and P ′′′ all span
Si. Therefore, all tree paths create a tree merging from vertex v, so that T [Si]
is spanned by a tree and not a path, in contradiction with the assumption
that H has a feasible solution tree by paths, see Figure 1.

Figure 1: A drawing for Lemma 4.6

Lemma 4.7. Let H =< V,S > be a hypergraph, with vertex set V and
clusters set S = {S1, . . . , Sm}. Let X ′,X ′′,X ′′′ be sets of intersections of
clusters If H has a feasible solution tree by paths, let P ′, P ′′ and P ′′′ be
paths which span the intersections of X ′,X ′′,X ′′′, respectively. If there exist
Si ∈ (X ′ ∩ X ′′) \ X ′′′ and Sj ∈ (X ′ ∩ X ′′′) \ X ′′ then in any feasible solution
P ′ has to appear between P ′′ and P ′′′.
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Proof. According to Lemma 4.2, P ′′′ can not be connected between P ′ and
P ′′. Furthermore, P ′′ can not be connected between P ′ and P ′′′. Therefore,
the only way to connect the paths is to connect P ′ between P ′′ and P ′′′.
In this case, P [Si] is spanned by the concatenation of P ′′ and P ′. P [Sj] is
spanned by the concatenation of P ′ and P ′′′.

Theorem 4.8. ([7] ) Let H =< V,S > be hypergraph whose intersec-
tion graph Gint(H) is a chordless cycle of size m ≥ 4, denoted as C, then
|ML(C)| = m− 2.

5 Triangular Intersection Graphs

In this section we consider a triangular intersection graph, see Figure 2. We
describe the conditions for a CSTP solution and suggest a minimum feasible
removal list and a minimum feasible insertion list. We assume H satisfies
the Helly property, otherwise according to Theorem 2.1, H does not have a
feasible solution tree by paths. Thus, by Helly property |X1,2,3| ≥ 1.

Figure 2: Triangular Intersection Graphs

Theorem 5.1. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3} and
a triangular intersection graph. If |X1,2,3| = 1, then H has a feasible solution
tree by paths.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 3. Let Pi,j be a path
spanning Xi,j, for i 6= j and let v be the only vertex in X1,2,3. Figure 3
presents a feasible solution by paths for H.
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Figure 3: Theorem 5.1 solution tree

Theorem 5.2. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangular intersection graph. If |X1,2,3| ≥ 1, and at least one of the
sub clusters X1,2, X1,3, X2,3 is empty, then H has a feasible solution tree by
paths.

Proof. If |X1,2,3| = 1, according to Theorem 5.1, H has a feasible solution tree
by paths. Else, without loss of generality, suppose that |X1,2| = 0. Figure 4
presents a feasible solution by paths for H.

Theorem 5.3. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangular intersection graph. If |X1,2,3| >1, and all of the sub clusters
X1,2, X1,3, X2,3 are not empty, then H has no feasible solution tree by paths.

Proof. Suppose by contradiction, that H has a feasible solution tree by paths,
denote this tree by T . Since |X1,2,3| > 1, according to Lemma 4.1, there is a
path P1,2,3 with at least one edge which spans X1,2,3. According to Lemma
4.1, there is a path P1,2 (P2,3, P1,3) with at least one vertex which spans
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Figure 4: Theorem 5.2 solution tree

X1,2 (X2,3, X1,3) respectively. Since T is a feasible solution tree, T [S1] is
a connected path and therefore it contains P1,2, P1,3 and P1,2,3 as sub paths.
According to Lemma 4.5, P1,2,3 has to appear between P1,3 and P2,3. Further-
more, since T is a feasible solution, T [S2] is a connected path with P1,2, P2,3

and P1,2,3 as its sub paths. Thus, according to Lemma 4.5, P1,2,3 has to
appear between P1,2 and P2,3.

Hence P1,2,3 has to be connected to P1,2, P1,3 and P2,3, such that two of
them have to be connected at the same endpoint of P1,2,3. Without loss of
generality, suppose that P1,2 and P1,3 are on the same endpoint. However,
in this case T [S1] is spanned by a tree and not a path as shown in Figure 5,
contradicting the assumption that T is a feasible solution tree by paths.

Corollary 5.4. According to Theorems 5.1,5.2, 5.3, a triangular intersection
graph has a feasible solution tree by paths if and only if |X1,2,3| =1 or |X1,2,3|
>1 and at least one of the sub clusters X1,2, X1,3, X2,3 is empty.
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Figure 5: T [S1]

Now we consider removal lists for triangular intersection graphs. Note
that, if H has a feasible solution tree, every removal list may be empty.

Theorem 5.5. Let H = < V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangular intersection graph. Choose v∗ ∈ X1,2,3. RL1,2,3 is a feasible
removal list of H with cardinality |X1,2,3| − 1.

Proof. Consider H \ RL1,2,3. According to Definition 3.27, |X−1,2,3| =1. Ac-
cording to Theorem 5.1, H \RL1,2,3 has a feasible solution tree by paths.

Theorem 5.6. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangular intersection graph. RL1,2 is a feasible removal list with
cardinality |X1,2|.

Proof. Consider H \ RL1,2. According to Definition 3.28, the cardinality of
|X−1,2| = 0. Since we assume |X1,2,3| ≥ 1, according to Theorem 5.2, H \RL1,2

has a feasible solution tree by paths.

Observation 5.7. Similarly, RL1,3 and RL2,3 are feasible removal lists with
cardinality |X1,3| and |X2,3|, respectively.

Theorem 5.8. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3} and
a triangular intersection graph.
RL ≡ argmin(|RL1,2,3|, |RL1,2|, |RL1,3|, |RL2,3|) is a minimum feasible re-
moval list of H.

Proof. According to Theorems 5.5 and 5.6 and Observation 5.7, all the lists
in RL are feasible removal lists, therefore RL is a feasible removal list.
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Assume H has a feasible solution tree by paths. Then according to Corol-
lary 5.4, one of the lists RL1,2,3, RL1,2, RL1,3 or RL2,3 is empty, thus by defini-
tion RL will also be empty. Therefore, RL is a minimum feasible removal list
of H. Otherwise, H does not have a feasible solution tree by paths. Accord-
ing to Corollary 5.4, in order to gain feasibility, either |X1,2,3| =1 or |X1,2,3|
>1 and at least one of the sub clusters X1,2, X1,3, X2,3 is empty. RL1,2,3 rep-
resents the first option, RL1,2, RL1,3 and RL2,3 represent the second option.
RL1,2,3, RL1,2, RL1,3 and RL2,3 represent all possible removal lists of H. RL
is the list with minimum cardinality, therefore RL is a minimum feasible
removal list of H.

Now we consider insertion lists for triangular intersection graphs. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 5.9. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3} and
a triangular intersection graph. IL(1,2)+3 is a feasible insertion list of H with
cardinality |X1,2|.

Proof. Consider H + IL(1,2)+3. According to Definition 3.29, the cardinality
of |X+

1,2| = 0. According to Theorem 5.2, H has a feasible solution tree by
paths.

Observation 5.10. Similarly, IL(1,3)+2 and IL(2,3)+1 are feasible insertion
lists with cardinality |X1,3| and |X2,3|, respectively.

Theorem 5.11. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangular intersection graph.
IL ≡ argmin(|IL(1,2)+3|, |IL(1,3)+2|, |IL(2,3)+1|) is a minimum feasible inser-
tion list of H.

Proof. According to Theorem 5.9 and Observation 5.10, all the lists in IL
are feasible insertion lists, therefore IL is a feasible insertion list. Since H
has no feasible solution tree by paths, according to Corollary 5.4, |X1,2,3|
>1 and all of the sub clusters X1,2, X1,3, X2,3 are not empty. To gain fea-
sibility using insertion, can only be achieved by inserting vertices to X1,2,3

and emptying at least one of the sub clusters X1,2, X1,3 or X2,3. Accord-
ing to Theorem 5.9 and Observation 5.10, IL(1,2)+3, IL(1,3)+2 and IL(2,3)+1

represent these insertions and are feasible insertion lists. Therefore IL ≡
argmin(|IL(1,2)+3|, |IL(1,3)+2|, |IL(2,3)+1|) is a minimum feasible insertion list
of H.
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5.1 Satisfied Triangles

In this section we consider a satisfied triangle and a strongly satisfied triangle
intersection graph. We describe the conditions for a feasible CSTP solution
and suggest a minimum feasible removal list and a minimum feasible insertion
list.

Lemma 5.12. Let H =< V,S > be a hypergraph, such that H[S1, S2, S3]
is a strongly satisfied triangle on S1, S3, then H[S1, S2, S3] has two possible
structures for a feasible solution tree by paths.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 3. Let Pi,j be a path
spanning Xi,j, for i 6= j . If |X1,2,3| = 1, let v be the only vertex in X1,2,3.
Then according to Theorem 5.1, Figure 6.1 presents a feasible solution by
paths for H.
If |X1,3| = 0. Let P1,2,3 be a path spanningX1,2,3. Then according to Theorem
5.2, Figure 6.2 presents a feasible solution by paths for H.

Figure 6: Theorem 5.12 solution trees

Remark 5.13. Some of the paths in Figure 6, may be empty.

Lemma 5.14. Let H =< V,S > be a hypergraph, such that H[S1, S2, S3] is
a satisfied triangle on S1, S2, then H[S1, S2, S3] has three possible structures
for a feasible solution tree by paths.
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Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 3. Let Pi,j be a path
spanning Xi,j, for i 6= j .
If |X1,2,3| = 1, let v be the only vertex in X1,2,3. Then according to Theorem
5.1, Figure 7.1 presents a feasible solution by paths for H.
If |X2,3| = 0, let P1,2,3 be a path spanning X1,2,3. Then according to Theorem
5.2, Figure 7.2 presents a feasible solution by paths for H.
If |X1,3| = 0, let P1,2,3 be a path spanning X1,2,3. Then according to Theorem
5.2, Figure 7.3 presents a feasible solution by paths for H.

Figure 7: Theorem 5.14 solution trees

Remark 5.15. Some of the paths in Figure 7, may be empty.

Now we consider removal lists to gain a satisfied triangular and strongly
satisfied triangular intersection graphs.

Theorem 5.16. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangle intersection graph.
Let RLsatisfied = argmin(|RL1,2,3|, |RL1,3|, |RL2,3|).
RLsatisfied is a minimum feasible removal list of H, such that H \RLsatisfied
is a satisfied triangle on S1, S2.

Proof. H[S1, S2, S3] is a satisfied triangle on S1, S2, if at least one of the
following conditions is satisfied: |X1,2,3| = 1, |X1,3| = 0 or |X2,3| = 0.
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RL1,2,3, RL1,3 and RL2,3 represent removal lists to gain each option, respec-
tively.

Theorem 5.17. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangle intersection graph.
Let RLstrongly = argmin(|RL1,2|, |RL1,2,3|).
RLstrongly is a minimum feasible removal list of H, such that H \ RLstrongly
is a strongly satisfied triangle on S1, S2.

Proof. H[S1, S2, S3] is a strongly satisfied triangle on S1, S2, if at least one
of the following conditions is satisfied: |X1,2,3| = 1 or |X1,2| = 0, RL1,2,3 and
RL1,2 represent removal lists to gain each option, respectively.

Now we consider insertion lists to gain a satisfied triangular and strongly
satisfied triangular intersection graphs.

Theorem 5.18. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangle intersection graph that is not a satisfied triangle on S1, S2.
Let ILsatisfied = argmin(|IL(1,3)+2|, |IL(2,3)+1|).
ILsatisfied is a minimum feasible insertion list of H, such that H+ ILsatisfied
is a satisfied triangle on S1, S2.

Proof. H[S1, S2, S3] is a satisfied triangle on S1, S2, if at least one of the
following conditions are satisfied: |X1,2,3| = 1, |X1,3| = 0 or |X2,3| = 0. To
gain a satisfied triangle on S1, S2 using insertions, can only be achieved by
inserting vertices to X1,2,3 and emptying at least one of the clusters X1,3

or X2,3. IL(1,3)+2 and IL(2,3)+1 represent insertion lists, respectively. Thus,
ILsatisfied is a minimum feasible insertion list of H, such that H + ILsatisfied
is a satisfied triangle on S1, S2.

Theorem 5.19. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3}
and a triangle intersection graph and is not a strongly satisfied triangle on
S1, S2. Let ILstrongly = IL(1,2)+3. ILstrongly is a minimum feasible insertion
list of H, such that H + ILstrongly is a strongly satisfied triangle on S1, S2.

Proof. To gain a strongly satisfied triangle on S1, S2, one of the following has
to hold: |X1,2,3| = 1 or |X1,2| = 0. To gain a strongly satisfied triangle on
S1, S2 using insertions, can only be achieved by inserting vertices to X1,2,3 and
emptying X1,2. IL(1,2)+3 represents the corresponding insertion list. Thus,
ILstrongly is a minimum feasible insertion list of H, such that H + ILstrongly
is a strongly satisfied triangle on S1, S2.
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6 Diamond Intersection Graphs

In this section we consider a diamond intersection graph, see Figure 8. We
describe the conditions for a feasible CSTP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.
We assume H satisfies the Helly property, otherwise according to Theorem
2.1, H does not have a feasible solution tree by paths, therefore |X1,2,3| ≥ 1
and |X1,2,4| ≥ 1.
Note that if H has a feasible solution tree, RL will be an empty list.

Figure 8: Diamond Intersection Graph

Theorem 6.1. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2. If |X1,2,3| = |X1,2,4| = 1, then
H has a feasible solution tree by paths.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 4. Let Pi,j be a path
spanning Xi,j, for i 6= j. Let v1,2,3 be the only vertex in X1,2,3. Let v1,2,4 be
the only vertex in X1,2,4. Figure 9 presents a feasible solution by paths for
H.

Theorem 6.2. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2, with |X1,2,3| > 1 and |X1,2,4| >
1.
If |X2,3| = |X2,4| = 0, then H has a feasible solution tree by paths.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 4. Let Pi,j be a path
spanning Xi,j, for i 6= j. Let Pi,j,r be a path spanning Xi,j,r, for i 6= j 6= r.
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Figure 9: Theorem 6.1 solution tree

Figure 10 presents a feasible solution by paths for H.

Figure 10: Theorem 6.2 solution tree

Observation 6.3. Similarly, Theorem 6.2 holds for conditions |X1,3| = |X1,4|
= 0.

Theorem 6.4. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2, with |X1,2,3| > 1 and |X1,2,4| >
1. If |X2,3| = |X1,4| = 0, then H has a feasible solution tree by paths.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 4. Let Pi,j be a path
spanning Xi,j, for i 6= j. Let Pi,j,r be a path spanning Xi,j,r, for i 6= j 6= r.
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Figure 11 presents a feasible solution by paths for H.

Figure 11: Theorem 6.4 solution tree

Observation 6.5. Similarly, Theorem 6.4 holds for conditions |X1,3| = |X2,4|
= 0.

Remark 6.6. Let H =< V,S > be a hypergraph, with S = {Si, Sj, Sr, Sk}
and a diamond intersection graph on Si, Sj. Theorem 6.2 is with respect to
intersections that share an index Xi,r , Xi,k or Xj,r , Xj,k . Theorem 6.4 is
with respect to intersections which use pairwise disjoint set of indices Xi,r ,
Xj,k or Xj,r , Xi,k.

Theorem 6.7. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2, with |X1,2,3| = 1 and |X1,2,4| >
1. If |X1,4| = 0 or |X2,4| = 0, then H has a feasible solution tree by paths.

Proof. Without loss of generality, suppose that |X1,4| = 0. Let Pi be a path
spanning Xi, for 1 ≤ i ≤ 4. Let Pi,j be a path spanning Xi,j, for i 6= j. Let
Pi,j,r be a path spanning Xi,j,r, for i 6= j 6= r. Figure 12 presents a feasible
solution by paths for H.

Observation 6.8. Similarly, Theorem 6.7 holds for conditions |X1,2,3| > 1,
|X1,2,4| = 1 and if |X1,3| = 0 or |X2,3| = 0.
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Figure 12: Theorem 6.7 solution tree

Theorem 6.9. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2, with |X1,2,3| ≥ 1 and |X1,2,4| >
1. If |X1,4| > 0 and |X2,4| > 0, or |X1,3| > 0 and |X2,3| > 0, then H has no
feasible solution tree by paths.

Proof. Suppose by contradiction, that H has a feasible solution tree by paths,
denote this tree as T . Without loss of generality, suppose that |X1,4| > 0 and
|X2,4| > 0. Since |X1,2,4| > 1, according to Lemma 4.1, there is a path P1,2,4

with at least one edge which spans X1,2,4. Since |X1,2,3| ≥ 1, there is a path
P1,2,3 with at least one vertex which spans X1,2,3. According to Lemma 4.1,
there is a path P1,4 (P2,4) with at least one vertex which spans X1,4 (X2,4).
Since T is a feasible solution tree, T [S2] is a connected path which contains
P2,4, P1,2,3 and P1,2,4 as its sub paths. Since T is a feasible solution tree,
T [S1] and T [S4] are connected, and according to Lemma 4.7, P1,2,4 has to be
between P1,2,3 and P2,4. Since T is a feasible solution tree, T [S4] is connected
and contains P1,4, P1,2,4 and P2,4 as its sub paths, such that P1,2,4 is in the
middle.
Next we consider how the four sub paths P2,4, P1,2,4, P1,2,3 and P1,4 are ar-
ranged in T . As proven above, P1,2,4 is connected between P1,2,3 and P2,4.
P1,4 has to be connected to one of the endpoints of P1,2,4 to insure that
P [S1], P [S2] and P [S4] are connected. Suppose P1,4 is connected to the same
endpoint as P1,2,3. In this case, P [S1] is spanned by a tree, see Figure 13.
Suppose P1,4 is connected to the other endpoint of P1,2,4 than P1,2,3. In this
case, P [S4] is spanned by a tree. Both cases contradict that T is a feasible
solution tree by paths.
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Figure 13: P [S1] spanned by a tree

Observation 6.10. Similarly, Theorem 6.9 holds for conditions |X1,2,3| > 1,
|X1,2,4| ≥ 1 and if |X1,3| > 0 and |X2,3| > 0 or |X2,4| > 0 and |X1,4| > 0.

Corollary 6.11. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2. H has a feasible solution tree
by paths if and only if H[S1, S2, S3] and H[S1, S2, S4] are satisfied triangles
on S1, S2.

Proof. Theorems 6.1, 6.2, 6.4 and 6.7 represent all possible ways ofH[S1, S2, S3]
and H[S1, S2, S4] being satisfied triangles on S1, S2 and show a feasible so-
lution tree by paths for H. Therefore, if H[S1, S2, S3] and H[S1, S2, S4] are
satisfied triangles on S1, S2, H has a feasible solution tree by paths. On
the other end, Theorem 6.9 and Observation 6.10, show that if H[S1, S2, S3]
or H[S1, S2, S4] are not satisfied triangles on S1, S2, then H has no feasible
solution tree by paths.

Now we consider removal lists for diamond intersection graphs. Note
that, if H has a feasible solution tree, every removal list may be empty.

Lemma 6.12. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2. The removal of edge (s1, s2) will
not achieve a minimum removal list.

Proof. The removal of edge (s1, s2) can be achieved by removing all of the
vertices of S1 ∩ S2 from one of the clusters S1 or S2. According to Corollary
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6.11, in order to gain a feasible solution tree by paths of H, H[S1, S2, S3] and
H[S1, S2, S4] have to be satisfied triangles on S1, S2. According to Theorem
5.16, removing edge (s1, s2) does not achieve a satisfied triangle on S1, S2,
therefore this removal will not achieve minimum removal list.

Theorem 6.13. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2. Let RL1,2,3 be a minimum fea-
sible removal list for triangle H[S1, S2, S3], so that H[S1, S2, S3] \ RL1,2,3 is
a satisfied triangle on S1, S2. Let RL1,2,4 be a minimum feasible removal list
for triangle H[S1, S2, S4], so that H[S1, S2, S4] \RL1,2,4 is a satisfied triangle
on S1, S2. RL ≡ RL1,2,3

⋃
RL1,2,4 is a minimum feasible removal list of H.

Proof. By Corollary 6.11, in order to gain a feasible solution tree by paths
of H, H[S1, S2, S3] and H[S1, S2, S4] have to be satisfied triangles on S1, S2.
H[S1, S2, S3]\RL1,2,3 is a satisfied triangle on S1, S2 and H[S1, S2, S4]\RL1,2,4

is a satisfied triangle on S1, S2. Another way to achieve feasibility is to remove
edge (s1, s2), by removing all of the vertices of S1∩S2 from one of the clusters
S1 or S2. According to Lemma 6.12, this option can never create a minimum
removal list.
Therefore, RL ≡ RL1,2,3

⋃
RL1,2,4 is a minimum feasible removal list of H.

Now we consider insertion lists for diamond intersection graphs. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 6.14. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2. Let IL1,2,3 be a minimum feasible
insertion list for triangle H[S1, S2, S3], such that H[S1, S2, S3] + IL1,2,3 is a
satisfied triangle on S1, S2. Let IL1,2,4 be a minimum feasible insertion list for
triangle H[S1, S2, S4], such that H[S1, S2, S4] + IL1,2,4 is a satisfied triangle
on S1, S2. IL ≡ IL1,2,3

⋃
IL1,2,4 is a minimum feasible insertion list of H.

Proof. Proof the same as for Theorem 6.13.

Lemma 6.15. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4}
and a diamond intersection graph on S1, S2, with a feasible solution tree by
paths of H. Let P1,2 , P1,2,3 and P1,2,4 be the paths spanning X1,2, X1,2,3 and
X1,2,4, respectively. If P1,2 is not connected between P1,2,3 and P1,2,4, then P1,2

can be moved to be connected between P1,2,3 and P1,2,4, without changing the
feasibility of H.
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Proof. H has a feasible solution tree, therefore every cluster in S is spanned
by a connected path. Moving P1,2 to be connected between P1,2,3 and P1,2,4,
does not affect the clusters being spanned by a connected path, since P1,2

remains in paths P [S1] and P [S2].

7 Butterfly Intersection Graphs

In this section we consider a butterfly intersection graph, see Figure 14. We
describe the conditions for a feasibleCSTP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.

Figure 14: Butterfly Intersection Graph

Theorem 7.1. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4, S5}
and a butterfly intersection graph on S1, S2 with 3 wings. If H[S1, S2, S3, S4]
has a feasible solution and |X1,5| = |X2,5| = 0, then H has a feasible solution.

Proof. According to the theorem’s assumption, H[S1, S2, S3, S4] has a feasible
solution tree by paths, denote this tree as T . Since S1, S2, S5 create a wing
in the intersection graph, S1

⋂
S5 6= ∅ and S2

⋂
S5 6= ∅. In addition, since H

satisfies the Helly property, X1,2,5 6= ∅, X1,2,4 6= ∅ and X1,2,3 6= ∅.
Let P1,2,4 (P1,2,3) be the path in T spanning the vertices in X1,2,4 (X1,2,3). Let
P1,2,5 be a path spanning X1,2,5.
Let P1,2 be the path in T spanning the vertices in X1,2. If P1,2 is not connected
between P1,2,3 and P1,2,4 in T , according to Lemma 6.15, we can change the
order of the vertices in P [S1] such that P1,2 is connected between P1,2,3 and
P1,2,4 and T remains a feasible solution tree.
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Add P1,2,5 between P1,2 and P1,2,4. Thus, in P [S1] the sub paths are arranged
in the following order: P1,2,3, P1,2, P1,2,5 and P1,2,4.
Let P5 be a path spanning X5. Recall that |X1,5| = 0 and |X1,5| = 0,
thus connect one of P5 endpoints to the vertex where P1,2,5 and P1,2,4 are
connected.
S1 is spanned by T [S1] and P1,2,5. S2 is spanned by T [S2] and P1,2,5. S3

is spanned by T [S3]. S4 is spanned by T [S4]. S5 is spanned by P1,2,5 and
P5. Figure 15 presents a feasible solution by paths for H, for the two case
P1,2 6= ∅ and P1,2 = ∅.

Figure 15: Theorem 7.1 solution tree

Theorem 7.2. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a butterfly intersection graph on S1, S2 with k wings. If H[S1, S2, S3, S4]
has a feasible solution and for every i ∈ {5, ..., k} |X1,i| = |X2,i| = 0, then H
has a feasible solution.

Proof. Since Gint(H) is a butterfly connected intersection graph on S1, S2,
H[S1, S2, S3, S4] has a diamond intersection graph on S1, S2. According to
the theorem’s assumption, H[S1, S2, S3, S4] has a feasible solution tree by
paths, denote this tree as T .
Let P1,2,4 (P1,2,3) be the path in T spanning the vertices in X1,2,4 (X1,2,3). Let
P1,2 be the path in T spanning the vertices in X1,2.
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Since S1, S2, Si where i ∈ {5, ..., k} create a wing in the intersection graph,
S1

⋂
Si 6= ∅ and S2

⋂
Si 6= ∅. In addition, since H satisfies the Helly property

X1,2,i 6= ∅. Let P1,2,i be the path spanning X1,2,i, for i ∈ {5, ..., k}.
Concatenate the sub paths P1,2,5, P1,2,6, ..., P1,2,k in this order. Let P ′ be the
created path. If P1,2 is not connected between P1,2,3 and P1,2,4 in T , according
to Lemma 6.15, we can change the order of the vertices in P [S1] such that
P1,2 is connected between P1,2,3 and P1,2,4 and T remains a feasible solution
tree.
Connect P ′ between P1,2 and P1,2,4.
Let Pi, where i ∈ {5, ..., k − 1}, be a path spanning Xi, and connect Pi to
the vertex connecting P1,2,i and P1,2,i+1.
Let Pk be a path spanning Xk, and connect Pk to the vertex connecting P1,2,k

and P1,2,4. S1 is spanned by T [S1] and P ′ . S2 is spanned by T [S2] and P ′ .
S3 is spanned by T [S3]. S4 is spanned by T [S4]. Si is spanned by P1,2,i and
Pi. Figure 16 presents a feasible solution by paths for H.

Figure 16: Theorem 7.2 solution tree

Observation 7.3. Similar to Theorem 7.2, if H[S1, S2, Si, Sj] for i, j ∈
{3, ...,m}, i 6= j has a feasible solution and for every k ∈ {3, ...,m} \ {i, j}
|X1,k| = |X2,k| = 0, then H has a feasible solution tree.

Theorem 7.4. Let H =< V,S > be a hypergraph, with a butterfly intersec-
tion graph on S1, S2. If there are 3 different indices i1, i2, i3 such that |X1,ij |
> 0 or |X2,ij | > 0 for j ∈ {1, 2, 3}, then H has no feasible solution tree by
paths.
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Proof. Suppose by contradiction that H has a feasible solution tree, denoted
by T . Without loss of generality, let {i1, i2, i3} = {3, 4, 5}, and that |X1,3| >
0, |X1,4| > 0, |X1,5| > 0.
Since S1, S2, Sij create a wing in the intersection graph, S1

⋂
Sij 6= ∅ and

S2

⋂
Sij 6= ∅, for 1 ≤ j ≤ 3. Since H satisfies the Helly property, X1,2,ij 6= ∅.

According to Lemma 4.1, every intersection is spanned by a connected path.
Let P1,3, P1,4 and P1,5 be the paths spanning X1,3, X1,4 and X1,5 in T , re-
spectively. Let P1,2,3, P1,2,4 and P1,2,5 be the paths spanning X1,2,3, X1,2,4 and
X1,2,5 in T , respectively. T [S1] is a connected path with P1,3, P1,4, P1,5, P1,2,3,
P1,2,5 and P1,2,5 as its sub paths. According to Lemma 4.7, P1,2,3 is between
P1,3 and P1,2,4, and P1,2,4 is between P1,4 and P1,2,3. So the order of the sub
paths in P [S1] is P1,3, P1,2,3, P1,2,4, P1,4. According to Lemma 4.5, P1,2,5 can
not to be connected between P1,3 and P1,2,3 or between P1,2,4 and P1,4. Hence
the order of the sub paths in P [S1] is P1,3, P1,2,3, P1,2,5, P1,2,4, P1,4.
Next, we consider where the sub path P1,5 is inside P [S1]. P1,5 has to touch
P1,2,5 to insure that P [S5] is connected. However, according to Lemma 4.5,
P1,5 can not be connected between P1,2,3 and P1,2,5 or between P1,2,5 and
P1,2,4. Contradicting the assumption that H has a feasible solution tree by
paths.

Now we consider removal lists for butterfly intersection graphs. Note
that, if H has a feasible solution tree, every removal list may be empty.

Theorem 7.5. Let H =< V,S > be a hypergraph with S = {S1, S2, S3, ..., Sm}
and a butterfly intersection graph on S1, S2. Let RLi,j, i, j ∈ {3, ...,m} be a
minimum cardinality feasible removal list of H[S1, S2, Si, Sj].
Let BRL = RLi,j

⋃
(RL1,k

⋃
RL2,k), k ∈ {3, ...,m}\{i, j}. BRL is a feasible

removal list for H.

Proof. Since RLi,j is a feasible removal list, H[S1, S2, Si, Sj] \ RLi,j has a
feasible solution tree. H[S1, S2, Si, Sj] \BRL has a feasible solution tree. In
addition, in H \ BRL, for every k ∈ {3, ...,m} \ {i, j}, |X−1,k| = |X−2,k| = 0
and therefore, according to Theorem 7.2, H has a feasible solution tree by
paths.
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Algorithm 1: ButterflyMinRemovalList

Input : Butterfly intersection graph
Output: Minimum removal list for butterfly intersection graph
BRL = [ ];
for i, j ∈ {3, ...,m}, i 6= j do

Find RLi,j a minimum cardinality feasible removal list for
H[S1, S2, Si, Sj];

tempList = [ ];
for k such that k ∈ {3, ...,m} and k 6= i, j do

tempList = tempList
⋃
RL1,k

⋃
RL2,k;

end
BRLi,j = RLi,j

⋃
tempList;

Let i∗, j∗ = argmin(BRLi,j);

end
return BRLi

∗,j∗

Theorem 7.6. Let H =< V,S > be a hypergraph with S = {S1, S2, S3, ..., Sm}
and a butterfly intersection graph on S1, S2. Algorithm ButterflyMinRe-
movalList returns a minimum cardinality feasible removal list for H.

Proof. Let L be a minimum feasible removal list. According to Theorem 7.4,
in H \ L there are at most two indices i′, j′ such that (|X−1,i′| > 0 or |X−2,i′|
> 0) and (|X−1,j′ | > 0 or |X−2,j′ | > 0). Furthermore, in H \ L, for every k ∈
{3, ...,m}\{i′, j′}, |X−1,k| = 0 and |X−2,k| = 0. According to Theorem 7.5, H \
L[S1, S2, Si′ , Sj′ ] has a feasible solution, therefore L = RLi

′,j′
⋃
RL1,k

⋃
RL2,k

k ∈ {3, ...,m} \ {i′, j′}, giving that L = BRLi
′,j′ .

Let BRLi
∗,j∗ be the result of the algorithm ButterflyMinRemovalList. Since

algorithm ButterflyMinRemovalList consider all possible pairs of indices, it
will also consider i′, j′, and therefore |BRLi∗,j∗| ≤ |BRLi′,j′ | = |L|, giving
that BRLi

∗,j∗ is also a minimum feasible removal list.

Now we consider insertion lists for the butterfly intersection graph. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 7.7. Let H =< V,S > be a hypergraph with S = {S1, S2, S3, ..., Sm}
and a butterfly intersection graph on S1, S2. Let ILi,j, i, j ∈ {3, ...,m} be a
minimum cardinality feasible insertion list of H[S1, S2, Si, Sj].
Let BIL = ILi,j

⋃
(IL(1,k)+2

⋃
IL(2,k)+1), k ∈ {3, ...,m} \ {i, j}. BIL is a

feasible insertion list for H.
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Proof. Since ILi,j is a feasible insertion list, H[S1, S2, Si, Sj] + ILi,j has a
feasible solution tree. H[S1, S2, Si, Sj] +BIL has a feasible solution tree. In
addition, in H + BIL, for every k ∈ {3, ...,m} \ {i, j}, |X+

1,k| = |X+
2,k| = 0

and therefore, according to Theorem 7.2, H has a feasible solution tree by
paths.

Algorithm 2: ButterflyMinInsertionList

Input : Butterfly intersection graph
Output: Minimum insertion list for butterfly intersection graph
BIL = [ ];
for i, j ∈ {3, ...,m}, i 6= j do

Find ILi,j a minimum cardinality feasible insertion list for
H[S1, S2, Si, Sj];

tempList = [ ];
for k such that k ∈ {3, ...,m} and k 6= i, j do

tempList = tempList
⋃
IL(1,k)+1

⋃
IL(2,k)+1;

end
BILi,j = ILi,j

⋃
tempList;

Let i∗, j∗ =argmin(BILi,j);

end
return BILi

∗,j∗

Theorem 7.8. Let H =< V,S > be a hypergraph with S = {S1, S2, S3, ..., Sm}
and a butterfly intersection graph on S1, S2. Algorithm ButterflyMinInser-
tionList returns a minimum cardinality feasible insertion list for H.

Proof. Let L be a minimum feasible insertion list. According to Theorem
7.4, in H + L there are at most two indices i′, j′ such that (|X+

1,i′ | > 0 or

|X+
2,i′ | > 0) and (|X+

1,j′ | > 0 or |X+
2,j′| > 0). Furthermore, in H + L for

every k ∈ {3, ...,m} \ {i′, j′}, |X+
1,k| = 0 and |X+

2,k| = 0. According to
Theorem 7.7, H + L[S1, S2, Si′ , Sj′ ] has a feasible solution, therefore L =
ILi

′,j′
⋃
IL(1,k)+1

⋃
IL(2,k)+1 k ∈ {3, ...,m}\{i′, j′}, giving that L = BILi

′,j′ .
Let BILi

∗,j∗ be the result of the algorithm ButterflyMinInsertionList. Since
algorithm ButterflyMinInsertionList consider all possible pairs of indices, it
will also consider i′, j′, and therefore |BILi∗,j∗| ≤ |BILi′,j′| = |L|, giving that
BILi

∗,j∗ is also a minimum feasible insertion list.
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8 Windmill Intersection Graphs

In this section we consider a windmill intersection graph, see Figure 17. We
describe the conditions for a feasible CSTP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.

Figure 17: Windmill Intersection Graph

Theorem 8.1. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a windmill intersection graph on S1. Gint(H) has m−1

2
triangular induced

sub graphs.

Proof. H has m clusters, cluster S1 that corresponds to node s1 in Gint(H), is
the cluster connected to all the triangles in Gint(H) such that every triangle
has 2 more nodes. Therefore, the total number of triangles is m−1

2
.

Observation 8.2. According to Definition 3.8, s1 is a cut node in Gint(S)
that disconnects Gint(S) into m−1

2
connected components whose corresponding

cluster sets are {S2, S3}, {S4, S5}, ..., {Sm−1, Sm}.

Observation 8.3. Furthermore, since s1 is a cut node, the corresponding
vertices sets S2

⋃
S3, S4

⋃
S5, ..., Sm−1

⋃
Sm are pairwise vertex disjoint.

Theorem 8.4. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a windmill intersection graph on S1. If every triangle in the windmill
has a feasible solution tree by paths, then H has a feasible solution.
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Proof. In [5], they prove that if the connected intersection graph Gint(S)
contains a cut node s∗, which disconnects the intersection graphs to clusters
sets {sa, . . . , sξ} and if every Hj = H[Sj ∪ {S∗}], j ∈ {a, . . . , ξ}, has a
feasible solution for CSTP problem, then H has a feasible solution for CSTP
problem. According to Observation 8.2, and the theorem assumption, every
triangle in the windmill has a feasible solution tree by paths. Therefore, H
has a feasible solution tree by paths, see Figure 18.

Figure 18: Theorem 8.4 solution tree

Now we consider removal lists for windmill intersection graph. Note that,
if H has a feasible solution tree, every removal list may be empty.

Theorem 8.5. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a windmill intersection graph on S1. mRL(H) =

∑m−1
2

i=1 mRL(H[S1, S2i, S2i+1]),
i ∈ {1, .., m−1

2
}.

Proof. According to Observation 8.2, s1 is a cut node which divides the
intersection graph into m−1

2
connected components whose clusters sets are

{S1, S2i, S2i+1}, for i ∈ {1, .., m−1
2
}. According to [5], mRL(H) =

∑m−1
2

i=1 mRL(H[S1, S2i, S2i+1]),
i ∈ {1, .., m−1

2
}.

Theorem 8.6. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a windmill intersection graph on S1. Let RLi be a minimum feasible

removal list for H[S1, S2i, S2i+1], i ∈ {1, .., m−12
}. RL ≡

⋃m−1
2

i=1 RLi is a min-
imum feasible removal list of H.
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Proof. According to Theorem 8.4, if every triangle in the windmill has a
feasible solution tree by paths, then H has a feasible solution. Since RLi is a
feasible removal list for H[S1, S2i, S2i+1], H[S1, S2i, S2i+1] \RLi has a feasible

solution tree. According to Theorem 8.4, H\
⋃m−1

2
i=1 RLi has a feasible solution

tree. Note that if one of the removal lists removes all the vertices from S1,
the intersection graph is disconnected and if every connected component has
a solution tree so thus the whole hypergraph. According to Theorem 8.5,⋃m−1

2
i=1 RLi is also a minimum removal list.

Now we consider insertion lists for windmill intersection graph. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 8.7. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a windmill intersection graph on S1. mIL(H) =

∑m−1
2

i=1 mIL(H[S1, S2i, S2i+1]).

Proof. As shown for Theorem 8.5.

Theorem 8.8. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a windmill intersection graph on S1. Let ILi be a minimum feasible inser-

tion list for H[S1, S2i, S2i+1], i ∈ {1, .., m−12
}. IL ≡

⋃m−1
2

i=1 ILi is a minimum
feasible insertion list of H.

Proof. As shown for Theorem 8.6.

9 Vertex Connected Triangular Chain Inter-

section Graphs

In this section we consider a vertex connected triangular chain intersection
graph with m−1

2
triangular intersection graphs, were each triangular is con-

nected to its neighbors by one different node, see Figure 19. We describe
the conditions for a feasible CSTP solution and suggest a minimum feasible
removal list and a minimum feasible insertion list.

Observation 9.1. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a vertex connected triangular chain intersection graph. H[S2i−1, S2i, S2i+1],
for i ∈ {1, ..., m−1

2
}, is a triangular intersection graph.
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Figure 19: Vertex Connected Chain Intersection Graph

Lemma 9.2. Let H =< V,S > be a hypergraph, with a vertex connected
triangular chain intersection graph. If the intersection graph has t sub graphs
which are triangles, then H has 2t+ 1 clusters.

Proof. Proof by induction on t, the number of triangular induced sub graphs
in H.

If t = 1 then Gint(H) contains only one triangular with three clusters.
Suppose the claim is correct for t − 1. We prove it for t. Gint(H) has

t − 1 triangular induced sub graphs and 2(t − 1) + 1 = 2t − 1 clusters.
We add two clusters to add one more triangular to Gint(H), and therefore,
2(t) + 1 = 2t+ 1.

Observation 9.3. According to Lemma 9.2, Gint(H) has m−1
2

triangular
induced sub graphs.

Observation 9.4. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a vertex connected triangular chain intersection graph. Cluster s2i+1 is
a cut node that divides the intersection graph to clusters sets {S1, .., S2i}
and {S2i+2, ..., Sm}. Furthermore, H[S1, ..., S2i+1] and H[S2i+1, ..., Sm] have
a vertex connected triangular chain intersection graph, for i ∈ {1, ..., m−1

2
}.

Theorem 9.5. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a vertex connected triangular chain intersection graph. If H[S2i−1, S2i, S2i+1], i ∈
{1, .., m−1

2
} has a feasible solution tree by paths, then H has a feasible solution

tree by paths.

Proof. Proof by induction on t, the number of triangular induced sub graphs
in Gint(H).
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If t = 1 then Gint(H) contains only one triangular. According to the
theorem assumption, this triangular has a feasible solution tree by paths.
This is a feasible solution tree tree by paths for H.

Suppose the claim is correct for t − 1. We prove it for t. According to
Observation 9.4, s2m−1 is a cut node where H[S1, ..., S2m−1] has a vertex con-
nected chain intersection graph with t−1 triangles and H[S2m−1, S2m, S2m+2]
has a triangular intersection graph. According to the induction hypothesis,
H[S1, ..., S2m−1] has a feasible solution tree. According to Observation 9.4,
s2m−1 is a cut node and H[S1, ..., S2m−1] and H[S2m−1, S2m, S2m+1] have a
feasible solution tree by paths. Therefore, according to [5], H has a feasible
solution tree tree by paths.

Now we consider removal lists for vertex connected triangular chain in-
tersection graph. Note that, if H has a feasible solution tree, every removal
list may be empty.

Theorem 9.6. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a vertex connected triangular chain intersection graph. mRL(H) =∑m−1

2
i=1 mRL(H[S2i−1, S2i, S2i+1]), i ∈ {1, .., m−1

2
}.

Proof. Proof that mRL(H) is a minimum removal list by induction on t, the
number of triangular induced sub graphs in Gint(H).

If t = 1 then Gint(H) contains only one triangular, according to the
theorem assumption, RL contains only the minimum feasible removal list of
this triangular. Therefore, mRL(H) is a minimum feasible removal list of H.

Suppose the claim is correct for t − 1. We prove it for t. According to
Theorem 9.5, s2t−1 is a cut node where H[S1, ..., S2t−1] has a vertex connected
chain intersection graph with t−1 triangles and H[S2t−1, S2t, S2t+1] has a tri-
angular intersection graph. Since s2m−1 is a cut node, according to [5], then
mRL(H) = mRL(H[S1, ..., S2t−1]) + mRL(H[S2t−1, S2t, S2t+1]). According to

the induction hypothesis, mRL(H[S1, ..., S2t−1) =
∑ t−2

2
i=1 mRL(H[S2i−1, S2i, S2i+1])

which proves that, mRL(H) =
∑m−1

2
i=1 mRL(H[S2i−1, S2i, S2i+1]), i ∈ {1, .., m−12

}.

Theorem 9.7. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a vertex connected triangular chain intersection graph.
Let RLi be a minimum feasible removal list for H[S2i−1, S2i, S2i+1], i ∈
{1, .., m−1

2
}. RL ≡

⋃m−1
2

i=1 RLi is a minimum feasible removal list of H.
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Proof. According to Theorem 9.5, if every triangle in the vertex connected
chain has a feasible solution tree by paths, then H has a feasible solution.
SinceRLi is a feasible removal list forH[S2i−1, S2i, S2i+1], H[S2i−1, S2i, S2i+1]\
RLi, for every i ∈ {1, .., m−1

2
}, has a feasible solution tree. According to

Theorem 9.6, H \
⋃m−1

2
i=1 RLi has a feasible solution tree. Hence,

⋃m−1
2

i=1 RLi
is a minimum removal list of H.

Now we consider insertion lists for vertex connected triangular chain in-
tersection graph. Note that, if H has a feasible solution tree, there is no need
for an insertion list.

Theorem 9.8. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a vertex connected triangular chain intersection graph.

mIL(H) =
∑m−1

2
i=1 mIL(H[S2i−1, S2i, S2i+1]), i ∈ {1, .., m−1

2
}.

Proof. As shown for Theorem 9.6.

Theorem 9.9. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a vertex connected triangular chain intersection graph.
Let ILi be a minimum feasible insertion list for H[S2i−1, S2i, S2i+1], i ∈
{1, .., m−1

2
}. IL ≡

⋃m−1
2

i=1 ILi is a minimum feasible insertion list of H.

Proof. As shown for Theorem 9.7.

10 Edge Connected Triangular Chain Inter-

section Graphs

In this section we consider an Edge Connected Triangular Chain intersec-
tion graph, with m − 2 triangular intersection graphs. Each triangular is
connected to its neighbors by one different edge, see Figure 20. We describe
the conditions for a feasible CSTP solution and suggest a minimum feasible
removal list and a minimum feasible insertion list.

Lemma 10.1. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and an edge connected triangular chain intersection graph. Gint(H) has m−2
triangular induced sub graphs.
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Figure 20: Edge Connected Chain intersection graph

Proof. Proof by induction on t, the number of triangular induced sub graphs
in H.

If t = 1 then Gint(H) contains only one triangular with three clusters,
and to check 3− 2 = 1 triangle.

Suppose the claim is correct for t−1. We now prove it for t. Gint(H) has
t − 1 = m − 3 triangular induced sub graphs and m clusters. We add one
cluster to add one more triangular to Gint(H), t = (m+ 1)− 3 = m− 2.

Theorem 10.2. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, S4, S5}
and an edge connected triangular chain intersection graph. If |X1,2,3| =
|X2,3,4| = |X3,4,5|= 1, then H has a feasible solution tree by paths.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 5. Let Pi,j be a path
spanning Xi,j, for i 6= j. Let v1,2,3 be the only vertex in X1,2,3. Let v2,3,4 be
the only vertex in X1,2,4. Let v3,4,5 be the only vertex in X1,2,4. Figure 21
presents a feasible solution by paths for H.

Lemma 10.3. Let H =< V,S > be a hypergraph, with S = {Si, Si+1, Si+2, Si+3}
and an edge connected triangular chain intersection graph. If H[Si, Si+1, Si+2]
is a strongly satisfied triangle on Si, Si+2 and H[Si+1, Si+2, Si+3] is a strongly
satisfied triangle on Si+1, Si+3, then H has a feasible solution tree by paths.

Proof. Consider Figure 22. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 5.
Let Pi,j be a path spanning Xi,j, for i 6= j. If |Xi,i+1,i+2| = 1, let vi,i+1,i+2
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Figure 21: Theorem 10.2 solution tree

be the only vertex in Xi,i+1,i+2. Otherwise, let Pi,i+1,i+2 be a path span-
ning Xi,i+1,i+2. If |Xi+1,i+2,i+3| = 1, let vi+1,i+2,i+3 be the only vertex in
Xi+1,i+2,i+3. Otherwise, let Pi+1,i+2,i+3 be a path spanning Xi+1,i+2,i+3. Ac-
cording to Lemma 5.12, each strongly satisfied triangle has 2 possible solution
trees.

1. If |Xi,i+1,i+2| = |Xi+1,i+2,i+3| = 1. Figure 23.1 presents a feasible solu-
tion tree by paths for H.

2. If |Xi,i+2| = |Xi+1,i+3| = 0. Figure 23.2 presents a feasible solution tree
by paths for H.

3. If |Xi+1,i+3| = 0 and |Xi,i+1,i+2| = 1. Figure 23.3 presents a feasible
solution tree by paths for H.

4. If |Xi,i+2| = 0 and |Xi+1,i+2,i+3| = 1. The construction of the tree is
similar to the solution tree shown in figure 23.3.
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Figure 22: Edge Connected Chain Intersection Graph with four clusters

Lemma 10.4. Let H =< V,S > be a hypergraph, with S = {Si, Si+1, Si+2, Si+3}
and an edge connected triangular chain intersection graph. If H[Si, Si+1, Si+2]
is a strongly satisfied triangle on Si, Si+2 and H[Si+1, Si+2, Si+3] is a satisfied
triangle on Si+1, Si+3, then H has a feasible solution tree by paths.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ 5. Let Pi,j be a path
spanning Xi,j, for i 6= j. If |Xi,i+1,i+2| = 1, let vi,i+1,i+2 be the only ver-
tex in Xi,i+1,i+2. Otherwise, let Pi,i+1,i+2 be a path spanning Xi,i+1,i+2. If
|Xi+1,i+2,i+3| = 1, let vi+1,i+2,i+3 be the only vertex in Xi+1,i+2,i+3. Other-
wise, let Pi+1,i+2,i+3 be a path spanning Xi+1,i+2,i+3. According to Lemma
5.12 and 5.14, a strongly satisfied triangle has 2 possible solution tree and a
satisfied triangle has 3 possible solution tree.

1. If |Xi,i+1,i+3| = |Xi+1,i+2,i+3| = 1. Figure 24.1 presents a feasible solu-
tion tree by paths for H.

2. If |Xi+1,i+3| = 0 and |Xi,i+1,i+3| = 1. Figure 24.2 presents a feasible
solution tree by paths for H.

3. If |Xi+2,i+3| = 0 and |Xi,i+1,i+3| = 1. Figure 24.3 presents a feasible
solution tree by paths for H.
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Figure 23: Theorem 10.3 solution tree

4. If |Xi,i+2| = 0 and |Xi+1,i+2,i+3| = 1. Figure 24.4 presents a feasible
solution tree by paths for H.

5. If |Xi,i+2| = 0 and |Xi+1,i+3| = 0. Figure 24.5 presents a feasible solu-
tion tree by paths for H.

6. If |Xi,i+2| = 0 and |Xi+2,i+3| = 0. Figure 24.6 presents a feasible solu-
tion tree by paths for H.

Theorem 10.5. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and edge connected triangular chain intersection graph. H has a feasible
solution tree by paths, if the following holds:

1. H[Si, Si+1, Si+2] is a strongly satisfied triangle on Si, Si+2, for i ∈
{2, ...,m− 2}.

2. H[S1, S2, S3] is a satisfied triangle on S2, S3.
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Figure 24: Theorem 10.4 solution tree

Proof. Proof by induction on t, the number of triangular induced sub graphs
in Gint(H).
If t = 1, according to Lemma 10.1, m = 3. In this case, Gint(H) contains
only one triangular intersection graph, which is a satisfied triangle on S2, S3,
see Figure 25. According to Corollary 5.4, this triangular has a feasible so-
lution tree by paths.

If t = 2, according to Lemma 10.1, m = 4. In this case, Gint(H) is a
diamond intersection graph with S = {S1, ..., S4}, which contains two trian-
gular intersection graphs, see Figure 26. H[S1, S2, S3] is a satisfied triangle
on S2, S3 and H[S2, S3, S4] is a strongly satisfied triangle on S2, S4. Accord-
ing to Corollary 6.11, this diamond has a feasible solution tree by paths.

Suppose the claim is correct for t − 1. We now prove it for t ≥ 2.
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Figure 25: One triangular intersection graph

Figure 26: Two triangular intersection graphs

H[S1, ..., Sm−1] has an edge connected chain intersection graph. According
to the induction hypothesis, this hypergraph has a feasible solution tree, de-
note this tree as T . Since H[Sm−3, Sm−2, Sm−1] is a strongly satisfied triangle
on Sm−3, Sm−1, either |Xm−3,m−2,m−1| = 1 or |Xm−3,m−1| = 0. According to
Lemma 5.12, T [Sm−3, Sm−2, Sm−1] has one of two possible structures, pre-
sented in Figure 6, the first corresponds to the case |Xm−3,m−2,m−1| = 1 and
the second to the case |Xm−3,m−1| = 0.
According to Lemma 5.12, since H[Sm−2, Sm−1, Sm] is a strongly satisfied tri-
angle on Sm−2, Sm, H[Sm−2, Sm−1, Sm] has a feasible solution tree, denote this
tree as T ′′. According to Lemma 10.3, H[Sm−3, Sm−2, Sm−1, Sm] has a feasible
solution tree by paths, denoted as T ′. If |Xm−3,m−2,m−1| = 1 or |Xm−3,m−1| =
0, then both T [Sm−3, Sm−2, Sm−1] and T ′[Sm−3, Sm−2, Sm−1] have the same
structure and are therefore identical. In any case, T [Sm−3, Sm−2, Sm−1] ≡
T ′[Sm−3, Sm−2, Sm−1] and the two trees T and T ′′ can be combined into one
tree, which is a feasible solution tree by paths of H.

Theorem 10.6. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and an edge connected triangular chain intersection graph. H has a feasible
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solution tree by paths, if the following holds:

1. H[Si, Si+1, Si+2] is a strongly satisfied triangle on Si, Si+2, for i ∈
{2, ...,m− 3}.

2. H[S1, S2, S3] is a satisfied triangle on S2, S3.

3. H[Sm−2, Sm−1, Sm] is a satisfied triangle on Sm−2, Sm−1.

Proof. According to Theorem 10.5, let T be the solution tree for H where S
= {S1, ..., Sm−1}. Since H[Sm−3, Sm−2, Sm−1] is a strongly satisfied triangle
on Sm−3, Sm−1, either |Xm−3,m−2,m−1| = 1 or |Xm−3,m−1| = 0. According to
Lemma 5.12, T [Sm−3, Sm−2, Sm−1] has one of two possible structures, pre-
sented in Figure 6, the first corresponds to the case |Xm−3,m−2,m−1| = 1 and
the second to the case |Xm−3,m−1| = 0. According to Lemma 5.14, since
H[Sm−2, Sm−1, Sm] is a satisfied triangle on Sm−2, Sm−1, H[Sm−2, Sm−1, Sm]
has a feasible solution tree, denote this tree as T ′′. According to Theo-
rem 10.3, H[Sm−3, Sm−2, Sm−1, Sm] has a feasible solution tree by paths, de-
noted as T ′. If |Xm−3,m−2,m−1| = 1, then both T [Sm−3, Sm−2, Sm−1] and
T ′[Sm−3, Sm−2, Sm−1] have the structure presented in Figure 6 and are there-
fore identical. If |Xm−3,m−1| = 0, then both T [Sm−3, Sm−2, Sm−1] and T ′[Sm−3, Sm−2, Sm−1]
have the structure presented in Figure 6 and are therefore identical. In any
case, T [Sm−3, Sm−2, Sm−1] ≡ T ′[Sm−3, Sm−2, Sm−1] and the two trees T and
T ′′ can be combined into one tree which is a feasible solution tree by paths
of H.

Theorem 10.7. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and an edge connected triangular chain intersection graph. H has no feasible
solution tree by paths, if at least one of the following holds:

1. H[S1, S2, S3] is not a satisfied triangle on S2, S3.

2. H[Sm−2, Sm−1, Sm] is not a satisfied triangle on Sm−2, Sm−1.

3. There is i ∈ {2, ...,m − 3} such that H[Si, Si+1, Si+2] is not a strongly
satisfied triangle on Si, Si+2.

Proof. If H[S1, S2, S3] is not a satisfied triangle on S2, S3, then according to
Corollary 6.11, H[S1, S2, S3, S4] which has a diamond sub intersection graph
does not have a feasible solution tree by paths. Therefore, according to
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Lemma 4.2, H does not have a feasible solution tree by paths.

If H[Sm−2, Sm−1, Sm] is not a satisfied triangle on Sm−2, Sm−1, then ac-
cording to Corollary 6.11, H[Sm−3, Sm−2, Sm−1, Sm] which has a diamond sub
intersection graph does not have a feasible solution tree by paths. Therefore,
according to Lemma 4.2, H does not have a feasible solution tree by paths.

If there is i ∈ {2, ...,m − 3} such that H[Si, Si+1, Si+2] is not a strongly
satisfied triangle on Si, Si+2, in this case |Xi,i+1,i+2| > 1 and |Xi,i+2| 6= 0.
If in addition |Xi,i+1| 6= 0 or |Xi+1,i+2| 6= 0, then H[Si, Si+1, Si+2] is not a
satisfied triangle on Si+1, Si+2 or Si, Si+1, and according to Corollary 6.11,
H[Si, Si+1, Si+2, Si+3] or H[Si−1, Si, Si+1, Si+2] which have a diamond sub in-
tersection graph do not have a feasible solution tree by paths. Therefore,
according to Lemma 4.2, if H has a sub graph that does not have a feasible
solution tree by paths, then H does not have a feasible solution tree by paths.

Otherwise, |Xi,i+1,i+2| > 1, |Xi,i+2| 6= 0, |Xi,i+1| = 0 and |Xi+1,i+2| = 0.
Suppose by contradiction that H has a feasible solution tree. Let Pi be a
path spanning Xi, for 1 ≤ i ≤ m. Let Pi,j be a path spanning Xi,j, for i 6= j.
Let Pi,j,k be a path spanning Xi,j,k, for i 6= j 6= k. According to Lemma 4.7,
Pi,i+1,i+2 has to be connected between Pi−1,i,i+1 and Pi+1,i+2,i+3, as shown in
Figure 27. According to Lemma 4.5, Pi,i+2 can not be connected between
Pi−1,i,i+1 and Pi,i+1,i+2, or between Pi,i+1,i+2 and Pi+1,i+2,i+3. According to
Lemma 4.6, Pi,i+2 can not be connected to a vertex connecting Pi−1,i,i+1

and Pi,i+1,i+2, or connected to a vertex connecting Pi,i+1,i+2 and Pi+1,i+2,i+3.
Therefore, Pi,i+2 can not be connected to Pi,i+1,i+2 in any way. Therefore, in
this case, P [Si

⋂
Si+2] is not spanned by a connected path, and hence, H has

no feasible solution tree by paths.

Now we consider removal lists for edge connected triangular chain inter-
section graph. Note that, if H has a feasible solution tree, every removal list
may be empty.

Lemma 10.8. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm} and
an edge connected triangular chain intersection graph.
Let RLi,i+1,i+2 be a minimum feasible removal list for triangle H[Si, Si+1, Si+2],
such that H[Si, Si+1, Si+2]\RLi,i+1,i+2 is a strongly satisfied triangle on Si, Si+2,
for i ∈ {2, ...,m− 3}.
Then, RLi,i+1,i+2, for i ∈ {2, ...,m− 3}, are pairwise disjoint.
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Figure 27: Path: Pi−1,i,i+1, Pi,i+1,i+2, Pi+1,i+2,i+3

Proof. Suppose there is (v′, S ′) ∈ RLi,i+1,i+2
⋂
RLj,j+1,j+2. Obviously, this

may happen only if j = i+ 1 or j = i+ 2.
Consider first case j = i + 1. According to Theorem 5.17, RLi,i+1,i+2 =
argmin(|RLi,i+2|, |RLi,i+1,i+2|) andRLi+1,i+2,i+3 = argmin(|RLi+1,i+3|, |RLi+1,i+2,i+3|).

If RLi,i+1,i+2 = RLi,i+2 and RLi+1,i+2,i+3 = RLi+1,i+2,i+3. RL
i,i+1,i+2 re-

moves vertices v ∈ Xi,i+2 from Si or Si+2 and RLi+1,i+2,i+3 removes vertices
v ∈ Si+1

⋂
Si+2

⋂
Si+3 from either Si+1, Si+2 or Si+3. Hence these lists are

disjoint.

If RLi,i+1,i+2 = RLi,i+2 and RLi+1,i+2,i+3 = RLi+1,i+3. RL
i,i+1,i+2 removes

vertices v ∈ Xi,i+2 from Si or Si+2 and RLi+1,i+2,i+3 removes vertices from
either Si+1 or Si+3. Hence these lists are disjoint.

If RLi,i+1,i+2 = RLi,i+1,i+2 and RLi+1,i+2,i+3 = RLi+1,i+3. RL
i,i+1,i+2 re-

moves vertices v ∈ Si
⋂
Si+1

⋂
Si+2 from either Si, Si+1 or Si+2 andRLi+1,i+2,i+3

removes vertices v ∈ Xi+1,i+3from either Si+1 or Si+3. Hence these lists are
disjoint.

If RLi,i+1,i+2 = RLi,i+1,i+2 and RLi+1,i+2,i+3 = RLi+1,i+2,i+3. RLi,i+1,i+2

removes vertices v ∈ Si
⋂
Si+1

⋂
Si+2 from either Si, Si+1 or Si+2 andRLi+1,i+2,i+3

removes vertices v ∈ Si+1

⋂
Si+2

⋂
Si+3 from either Si+1, Si+2 or Si+3. Hence

these lists are disjoint.

Consider case j = i + 2. According to Theorem 5.17, RLi,i+1,i+2 =
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argmin(|RLi,i+2|, |RLi,i+1,i+2|) andRLi+2,i+3,i+4 = argmin(|RLi+2,i+4|, |RLi+2,i+3,i+4|).

If RLi,i+1,i+2 = RLi,i+2 and RLi+2,i+3,i+4 = RLi+2,i+3,i+4. RL
i,i+1,i+2 re-

moves vertices v ∈ Xi,i+2 from Si or Si+2 and RLi+2,i+3,i+4 removes vertices
v ∈ Si+2

⋂
Si+3

⋂
Si+4 from either Si+2, Si+3 or Si+4. Hence these lists are

disjoint.

If RLi,i+1,i+2 = RLi,i+2 and RLi+2,i+3,i+4 = RLi+2,i+4. RLi,i+1,i+2 re-
moves vertices v ∈ Xi,i+2 from Si or Si+2 and RLi+2,i+3,i+4 removes vertices
v ∈ Xi+2,i+4 from either Si+2 or Si+4. Hence these lists are disjoint.

If RLi,i+1,i+2 = RLi,i+1,i+2 and RLi+2,i+3,i+4 = RLi+2,i+4. RL
i,i+1,i+2 re-

moves vertices v ∈ Si
⋂
Si+1

⋂
Si+2 from either Si, Si+1 or Si+2 andRLi+2,i+3,i+4

removes vertices v ∈ Xi+2,i+4 from either Si+2 or Si+4. Hence these lists are
disjoint.

If RLi,i+1,i+2 = RLi,i+1,i+2 and RLi+2,i+3,i+4 = RLi+2,i+3,i+4. RLi,i+1,i+2

removes vertices v ∈ Si
⋂
Si+1

⋂
Si+2 from either Si, Si+1 or Si+2 andRLi+2,i+3,i+4

removes vertices v ∈ Si+2

⋂
Si+3

⋂
Si+4 from either Si+2, Si+3 or Si+4. Hence

these lists are disjoint.

Lemma 10.9. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm} and
an edge connected triangular chain intersection graph.
Let RL1,2,3 be a minimum feasible removal list for triangle H[S1, S2, S3], such
that H[S1, S2, S3] \RL1,2,3 is a satisfied triangle on S2, S3.
Let RLi,i+1,i+2 be a minimum feasible removal list for triangle H[Si, Si+1, Si+2],
such that H[Si, Si+1, Si+2]\RLi,i+1,i+2 is a strongly satisfied triangle on Si, Si+2,
for i ∈ {2, ...,m− 3}.
Then RL1,2,3 and RLi,i+1,i+2, for i ∈ {2, ...,m− 3}, are pairwise disjoint.

Proof. LetRL1,2,3 = RLj,j+1,j+2. Suppose there is (v′, S ′) ∈ RL1,2,3
⋂
RLj,j+1,j+2.

Obviously, this may happen only if j = 2 or j = 3.
Consider first case j = 2.
According to Theorems 5.16 and 5.17, RL2,3,4 = argmin(|RL2,4|, |RL2,3,4|)
and RL1,2,3 = argmin(|RL1,3|, |RL2,3|, |RL1,2,3|).

If RL1,2,3 = RL1,3 and RL2,3,4 = RL2,3,4. RL
1,2,3 removes vertices v ∈ X1,3

from S1 or S3 and RL2,3,4 removes vertices v ∈ S2

⋂
S3

⋂
S4 from either S2, S3
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or S4. Hence these lists are disjoint.

If RL1,2,3 = RL1,3 and RL2,3,4 = RL2,4. RL
1,2,3 removes vertices v ∈ X1,3

from S1 or S3 and RL2,3,4 removes vertices v ∈ X2,4 from either S2 or S4.
Hence these lists are disjoint.

If RL1,2,3 = RL2,3 and RL2,3,4 = RL2,3,4. RL
1,2,3 removes vertices v ∈ X2,3

from S2 or S3 and RL2,3,4 removes vertices v ∈ S2

⋂
S3

⋂
S4 from either S2, S3

or S4. Hence these lists are disjoint.

If RL1,2,3 = RL2,3 and RL2,3,4 = RL2,4. RL
1,2,3 removes vertices v ∈ X2,3

from S2 or S3 and RL2,3,4 removes vertices v ∈ X2,4 from either S2 or S4.
Hence these lists are disjoint.

If RL1,2,3 = RL1,2,3 and RL2,3,4 = RL2,3,4. RL1,2,3 removes vertices
v ∈ S1

⋂
S2

⋂
S3 from either S1, S2 or S3 and RL2,3,4 removes vertices v ∈

S2

⋂
S3

⋂
S4 from either S2, S3 or S4. Hence these lists are disjoint.

If RL1,2,3 = RL1,2,3 and RL2,3,4 = RL2,4. RL1,2,3 removes vertices v ∈
S1

⋂
S2

⋂
S3 from either S1, S2 or S3 and RL2,3,4 removes vertices v ∈ X2,4

from either S2 or S4. Hence these lists are disjoint.

Consider case j = 3.
According to Theorems 5.16 and 5.17, RL3,4,5 = argmin(|RL3,5|, |RL3,4,5|)
and RL1,2,3 = argmin(|RL1,3|, |RL2,3|, |RL1,2,3|).

If RL1,2,3 = RL1,3 and RL3,4,5 = RL3,4,5. RL
1,2,3 removes vertices v ∈ X1,3

from S1 or S3 and RL3,4,5 removes vertices v ∈ S3

⋂
S4

⋂
S5 from either S3, S4

or S5. Hence these lists are disjoint.

If RL1,2,3 = RL1,3 and RL3,4,5 = RL3,5. RL
1,2,3 removes vertices v ∈ X1,3

from S1 or S3 and RL3,4,5 removes vertices v ∈ X3,5 from either S3 or S5.
Hence these lists are disjoint.

If RL1,2,3 = RL2,3 and RL3,4,5 = RL3,4,5. RL
1,2,3 removes vertices v ∈ X2,3

from S2 or S3 and RL3,4,5 removes vertices v ∈ S3

⋂
S4

⋂
S5 from either S3, S4

or S5. Hence these lists are disjoint.
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If RL1,2,3 = RL2,3 and RL3,4,5 = RL3,5. RL
1,2,3 removes vertices v ∈ X2,3

from S2 or S3 and RL3,4,5 removes vertices v ∈ X3,5 from either S3 or S5.
Hence these lists are disjoint.

If RL1,2,3 = RL1,2,3 and RL3,4,5 = RL3,4,5. RL1,2,3 removes vertices
v ∈ S1

⋂
S2

⋂
S3 from either S1, S2 or S3 and RL3,4,5 removes vertices v ∈

S3

⋂
S4

⋂
S5 from either S3, S4 or S5.. Hence these lists are disjoint.

If RL1,2,3 = RL1,2,3 and RL3,4,5 = RL3,5. RL1,2,3 removes vertices v ∈
S1

⋂
S2

⋂
S3 from either S1, S2 or S3 and RL3,4,5 removes vertices v ∈ X3,5

from either S3 or S5. Hence these lists are disjoint.
Similarly, the proof holds for RLm−2,m−1,m and RLi,i+1,i+2, for i ∈ {2, ...,m−
3}.

Theorem 10.10. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and an edge connected triangular chain intersection graph.
Let RL1,2,3 be a minimum feasible removal list for triangle H[S1, S2, S3], such
that H[S1, S2, S3] \RL1,2,3 is a satisfied triangle on S2, S3.
Let RLm−2,m−1,m be a minimum feasible removal list for triangle H[Sm−2, Sm−1, Sm],
such that H[Sm−2, Sm−1, Sm]\RLm−2,m−1,m is a satisfied triangle on Sm−2, Sm−1.
Let RLi,i+1,i+2 be a minimum feasible removal list for triangle H[Si, Si+1, Si+2],
such that H[Si, Si+1, Si+2]\RLi,i+1,i+2 is a strongly satisfied triangle on Si, Si+2,
for i ∈ {2, ...,m− 3}.
Let RL = RL1,2,3

⋃
RLm−2,m−1,m

⋃
i∈{2,...,m−3}RL

i,i+1,i+2.
RL is a feasible removal list of H.

Proof. InH\RL, RL1,2,3 andRLm−2,m−1,m are satisfied triangles andRLi,i+1,i+2

is a strongly satisfied triangle, for i ∈ {2, ...,m− 3}. According to Theorem
10.6, H \RL has a feasible solution tree by paths, therefore, RL is a feasible
removal list for H.

Theorem 10.11. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and an edge connected triangular chain intersection graph.
Let RL1,2,3 be a minimum feasible removal list for triangle H[S1, S2, S3], such
that H[S1, S2, S3] \RL1,2,3 is a satisfied triangle on S2, S3.
Let RLm−2,m−1,m be a minimum feasible removal list for triangle H[Sm−2, Sm−1, Sm],
such that H[Sm−2, Sm−1, Sm]\RLm−2,m−1,m is a satisfied triangle on Sm−2, Sm−1.
Let RLi,i+1,i+2 be a minimum feasible removal list for triangle H[Si, Si+1, Si+2],
such that H[Si, Si+1, Si+2]\RLi,i+1,i+2 is a strongly satisfied triangle on Si, Si+2,
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for i ∈ {2, ...,m− 3}.
Let RL = RL1,2,3

⋃
RLm−2,m−1,m

⋃
i∈{2,...,m−3}RL

i,i+1,i+2.
RL is a minimum feasible removal list of H.

Proof. According to Theorem 10.10, mRL(H) ≤ |RL1,2,3|+ |RLm−2,m−1,m|+∑m−3
i=2 |RLi,i+1,i+2|.

Assume RL′ is a minimum feasible removal list for H.
Let RL′1,2,3 = RL′[S1, S2, S3], RL

′m−2,m−1,m = RL′[Sm−2, Sm−1, Sm] and
RL′i,i+1,i+2 = RL′[Sm−2, Sm−1, Sm], for i ∈ {2, ...,m− 3}.
According to Lemma 4.4, RL′[S1, S2, S3] is a feasible removal list forH[S1, S2, S3].
According to Lemma 4.4, RL′[Sm−2, Sm−1, Sm] is a feasible removal list for
H[Sm−2, Sm−1, Sm]. According to Lemma 4.4, RL′[Sm−2, Sm−1, Sm] is a feasi-
ble removal list forH[Sm−2, Sm−1, Sm], for i ∈ {2, ...,m−3}. Since, RL′1,2,3, RL′m−2,m−1,m

and RL′i,i+1,i+2 are pairwise disjoint, the same proofs hold as in Lemmas 10.8,
10.9 and 10.10. Therefore, |RL′| = |RL′1,2,3|+|RL′m−2,m−1,m|+

∑m−3
i=2 |RL′i,i+1,i+2|.

Since, RL′ is a feasible removal list, |RL′| = |RL′1,2,3| + |RL′m−2,m−1,m| +∑m−3
i=2 |RL′i,i+1,i+2| ≥ |RL1,2,3|+ |RLm−2,m−1,m|+

∑m−3
i=2 |RLi,i+1,i+2|.

Now we consider insertion lists for edge connected triangular chain inter-
section graph. Note that, if H has a feasible solution tree, there is no need
for an insertion list.

Lemma 10.12. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and an edge connected triangular chain intersection graph..
Let ILi,i+1,i+2 be a minimum feasible insertion list for triangle H[Si, Si+1, Si+2],
such that H[Si, Si+1, Si+2]+IL

i,i+1,i+2 is a strongly satisfied triangle on Si, Si+2,
for i ∈ {2, ...,m− 3}.
Then, ILi,i+1,i+2, for i ∈ {2, ...,m− 3}, are pairwise disjoint.

Proof. Suppose there is (v′, S ′) ∈ ILi,i+1,i+2
⋂
ILj,j+1,j+2. Obviously, this

may happen only if j = i+ 1 or j = i+ 2.
Consider first case j = i + 1. According to Theorem 5.19, ILi,i+1,i+2 =
IL(i,i+2)+(i+1)) and ILi+1,i+2,i+3 = IL(i+1,i+3)+(i+2)). In this case, ILi,i+1,i+2

inserts vertices from Xi,i+2 to Si+1 and RLi+1,i+2,i+3 inserts vertices from
Xi+1,i+3 to Si+2. Hence these lists are disjoint.

Consider case j = i + 2. According to Theorem 5.19, ILi,i+1,i+2 =
IL(i,i+2)+(i+1)) and ILi+2,i+3,i+4 = IL(i+2,i+4)+(i+3)). In this case, ILi,i+1,i+2

inserts vertices from Xi,i+2 to Si+1 and RLi+2,i+3,i+4 inserts vertices from
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Xi+2,i+4 to Si+3. Hence these lists are disjoint.

Lemma 10.13. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and an edge connected triangular chain intersection graph..
Let ILi,i+1,i+2 be a minimum feasible insertion list for triangle H[Si, Si+1, Si+2],
such that H[Si, Si+1, Si+2]+IL

i,i+1,i+2 is a strongly satisfied triangle on Si, Si+2,
for i ∈ {2, ...,m− 3}.
Let IL1,2,3 be a minimum feasible removal list for triangle H[S1, S2, S3], such
that H[S1, S2, S3] + IL1,2,3 is a satisfied triangle on S2, S3.
Then IL1,2,3 and ILi+1,i+2,i+3, for i ∈ {2, ...,m− 3}, are pairwise disjoint.

Proof. Suppose there is (v′, S ′) ∈ IL1,2,3
⋂
ILj,j+1,j+2. Obviously this may

happen only if j = 2 or j = 3.
Consider first case j = 2.According to Theorems 5.19 and 5.18, IL2,3,4 =
IL(2,4)+(3)) and IL1,2,3 = argmin(|IL(1,3)+(2)|, |IL(1,2)+(3)|).

If IL1,2,3 = IL(1,3)+(2). In this case, IL1,2,3 inserts vertices from X1,3 to
S2 and RL2,3,4 inserts vertices from X2,4 to S3. Hence these lists are disjoint.

If IL1,2,3 = IL(1,2)+(3). In this case, IL1,2,3 inserts vertices from X1,2 to
S3 and RL2,3,4 inserts vertices from X2,4 to S3. Hence these lists are disjoint.

Consider case j = 3. According to Theorems 5.19 and 5.18, IL3,4,5 =
IL(3,5)+(4)) and IL1,2,3 = argmin(|IL(1,3)+(2)|, |IL(1,2)+(3)|)..

If IL1,2,3 = IL(1,3)+(2). In this case, IL1,2,3 inserts vertices from X1,3 to
S2 and RL3,4,5 inserts vertices from X3,5 to S4. Hence these lists are disjoint.

If IL1,2,3 = IL(1,2)+(3). In this case, IL1,2,3 inserts vertices from X1,2 to
S3 and RL3,4,5 inserts vertices from X3,5 to S4. Hence these lists are disjoint.
Similarly, the proof holds for ILm−2,m−1,m and ILi,i+1,i+2, for i ∈ {2, ...,m−
3}.

Theorem 10.14. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and an edge connected triangular chain intersection graph.
Let IL1,2,3 be a minimum feasible insertion list for triangle H[S1, S2, S3], such
that H[S1, S2, S3]

⋃
IL1,2,3 is a satisfied triangle on S2, S3.

Let ILm−2,m−1,m be a minimum feasible insertion list for triangle H[Sm−2, Sm−1, Sm],
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such that H[Sm−2, Sm−1, Sm]
⋃
ILm−2,m−1,m is a satisfied triangle on Sm−2, Sm−1.

Let ILi,i+1,i+2 be a minimum feasible insertion list for triangle H[Si, Si+1, Si+1],
such that H[Si, Si+1, Si+1]

⋃
ILi,i+1,i+2 is a strongly satisfied triangle on Si, Si+2,

for i ∈ {2, ...,m− 3}.
Let IL = IL1,2,3

⋃
ILm−2,m−1,m

⋃
i∈{2,...,m−3} IL

i,i+1,i+2.
IL is a minimum feasible insertion list of H.

Proof. The proof is similar to Theorems 10.10 and 10.11.

11 One Chordless Cycle Intersection Graphs

In this section we consider a One Chordless Cycle intersection graph. We
describe the conditions for a feasible CSTP solution and suggest a minimum
feasible removal list and two minimum feasible insertion lists. The first in-
sertion list, inserts a vertex from each intersection to the same cluster. The
second insertion list, inserts the same vertex from an intersection to all the
clusters that do not include him.

Theorem 11.1. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm},
m ≥ 4, and a one chordless cycle intersection graph. H has no feasible
solution tree by paths.

Proof. Since CSTP is a special case of CSTT and according to Theorem
2.1, H has no feasible solution tree by paths.

Now we consider removal lists for one chordless cycle intersection graph.

Theorem 11.2. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
Let RL = argmin(RL1,2, RL2,3, ..., RLm−1,m, RLm,1). RL is a feasible re-
moval list of H and is the removal list which removes an edge from Gint(H).

Proof. Without loss of generality, suppose, RL = RLi,i+1, for some 1 ≤ i ≤
m − 1. In H \ RLi,i+1, |Xi,i+1| = 0 and in the intersection graph the edge
(si, si+1) is removed, so the intersection graph of H \ RLi,i+1 is a path. Let
Pi be a path spanning Xi, for i ∈ {1, ..,m}. Let Pi,i+1 be a path spanning
Xi,i+1. Figure 28 presents a feasible solution by paths for H \RLi,i+1.
A similar proof applies for case RL = RLm,1.
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Figure 28: Theorem 11.2 solution tree

Theorem 11.3. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
Let RL = argmin(RL1,2, RL2,3, ..., RLm−1,m, RLm,1). RL is a minimum fea-
sible removal list of H.

Proof. Suppose by contradiction, that RL is not a minimum removal list.
Let L be a minimum removal list of H. By Theorem 11.2, RL represents the
minimum removal list such that, one of the edges of the intersection graph
is removed. Since |L| < |RL|, no edge was removed from the intersection
graph and no edge was added to the intersection graph. Therefore, H \ L
intersection graph is still a one chordless cycle intersection graph. According
to Theorem 11.1, H \ L does not have a feasible solution tree by paths.
Contradicting the assumption that L is a feasible removal list.

Theorem 11.4. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
Let RL = argmin(RL1,2, RL2,3, ..., RLm−1,m, RLm,1). RL is the only mini-
mum feasible removal list of H.

Proof. According to Theorem 11.3, RL is a minimum feasible removal list
of H. Let L be the minimum removal list of H. All minimum removal lists
of H have to remove vertices so that one of Gint(H) edges will be removed
and Gint(H) will not be a one chordless cycle intersection graph. Otherwise,
according to Theorem 11.1, H \ L does not have a feasible solution tree by
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paths. RL represents the minimum removal list such that, one of the edges
of the intersection graph is removed. Therefore, RL is the only minimum
feasible removal list of H.

Now we consider two minimum insertion lists for one chordless cycle in-
tersection graph.

Definition 11.5. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
Let Sj ∈ S and denote ILj = {(vi,i+1, Sj)| vi,i+1 ∈ Xi,i+1, for i ∈ {1, ...j −
2, j + 1, ...,m− 1}}. Note that, |ILj| = m− 2.

Theorem 11.6. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
ILj is a feasible insertion list of H.

Proof. Let Pi be a path spanning Xi, for 1 ≤ i ≤ m. Let Pi,i+1 be a
path spanning Xi,i+1. Let vi,i+1 be the vertex chosen from Si

⋂
Si+1. Ver-

tices vi,i+1, for i ∈ {1, ...j − 2, j + 1, ...,m − 1}, are connected by a path
vj+1,j+2, vj+2,j+3, ..., vm−1,m, ..., vj−2,j−1, denote this path by P ′. Every Pi,i+1

is connected to the corresponding vertex vi,i+1, for i ∈ {1, ...,m − 1}}. Sj
is spanned by Pj,j+1, P

′ and Pj−1,j. Figure 29 presents a feasible solution by
paths for H + ILj.

Figure 29: Theorem 11.6 solution tree
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Theorem 11.7. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
ILj is a minimum feasible insertion list of H.

Proof. According to Theorem 11.6, ILj is a feasible insertion list of H. Ac-
cording to the definition of ILj, |ILj| = m − 2. According to Theorem 4.8,
and since CSTP is a special case of CSTT and according to Theorem 2.1,in
every insertion list there are at least m − 2 insertions. ILj is a minimum
feasible insertion list of H.

Definition 11.8. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
Choose an intersection from {X1,2, X2,3, ..., Xm−1,m, Xm,1}, denote by Xj,j+1.
Choose a vertex v ∈ Xj,j+1 .
Denote ILv = {(v, S1), (v, S2), (v, S3), ..., (v, Sj−1), (v, Sj+2), ..., (v, Sm)}.
Note that, |ILv| = m− 2.

Theorem 11.9. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
ILv is a feasible insertion list of H, where in H + ILv, v ∈ Si,∀i.

Proof. In H + ILv, v ∈ Si for every Si ∈ S. Let Pi be a path spanning Xi,
for 1 ≤ i ≤ m. Let Pi,i+1 be a path spanning Xi,i+1. Let v be the chosen
vertex. Every Pi,i+1 is connected in one end point to v and the other end
point to Pi, see Figure 30. Figure 30 presents a feasible solution by paths for
H + ILv.

Theorem 11.10. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a one chordless cycle intersection graph.
ILv is a minimum feasible insertion list of H, where in H + ILv, v ∈ Si∀i.

Proof. According to Theorem 11.9, ILv is a feasible insertion list of H. Ac-
cording to the definition of ILv, |ILv| = m− 2. According to Theorem 4.8,
and since CSTP is a special case of CSTT and according to Theorem 2.1,
in every insertion list there are at least m− 2 insertions. ILv is a minimum
feasible insertion list of H.
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Figure 30: Theorem 11.9 solution tree

12 Two Chordless Cycles With A Separating

Edge Intersection Graphs

In this section we consider a Two Chordless Cycle With a Separating Edge
intersection graph, see Figure 31. We describe the conditions for a feasible
CSTP solution and suggest a minimum feasible removal list and two mini-
mum feasible insertion lists. The first insertion list, inserts the same vertex
from an intersection to all the clusters that do not include him. The second
insertion list, inserts a vertex from each intersection to the same cluster.

Definition 12.1. Let H =< V,S > be a hypergraph and a two chord-
less cycles with a separating edge (s1, s2) intersection graph. The removal
of nodes {s1, s2} and edge (s1, s2) creates two connected components, cor-
responding to the clusters collections Sa,Sb. Let Sa = {Ra

3, ...,R
a
ma
} and

Sb = {Rb
3 , ...,R

b
mb
}. Let ma and mb be the number of clusters in Sa and

Sb, respectively.

Theorem 12.2. Let H =< V,S > be a hypergraph and a two chordless cycles
with a separating edge (s1, s2) intersection graph. If max{ma,mb} ≥ 2, H
has no feasible solution tree by paths.

Proof. If max{ma,mb} ≥ 2, at least one of the cycles is a chordless cycle with
at least four nodes. Since CSTP is a special case of CSTT , then according
to Theorem 2.1, H has no feasible solution tree by paths.
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Figure 31: Two Chordless Cycle With A Separating Edge intersection graph

Now we consider removal lists for two chordless cycles with a separating
edge (s1, s2) intersection graph.

Definition 12.3. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph.
Let RLa

i,i+1 = {(v,Ra
i )|v ∈ Ra

i

⋂
Ra
i+1, for i ∈ {3, ..,m−1}} and let RLb

i,i+1 =

{(v,Rb
i)|v ∈ Rb

i

⋂
Rb
i+1, for i ∈ {3, ..,m− 1}} .

Let RLa
2,3 = {(v, S2)|v ∈ S2

⋂
Ra

3} and let RLb
2,3 = {(v, S2)|v ∈ S2

⋂
Rb

3}
.

Let RLa
ma,1 = {(v,Ra

ma
)|v ∈ Ra

ma

⋂
S1} and let RLb

mb,1
= {(v,Rb

mb
)|v ∈

Rb
mb

⋂
S1} .

Theorem 12.4. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph.
Let RLa,b = argmin(RLa2,3, ..., RL

a
ma−1,ma

, RLama,1)
⋃
argmin(RLb2,3, ..., RL

b
mb−1,mb

, RLbmb,1
).

RLa,b is a feasible removal list of H.
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Proof. RLa,b removes an edge such that both end nodes correspond to clusters
from Sa, and an edge such that both end nodes correspond to clusters from
Sb, see Figure 32.1 In this case, Gint(H \ RLa,b) is a tree. According to
Lemma 4.2, it has a feasible solution tree by paths.

Theorem 12.5. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph.
Let RLa = RL1,2

⋃
argmin(RLa2,3, ..., RL

a
ma−1,ma

, RLama,1).
RLa is a feasible removal list of H.

Proof. RLa removes the separating edge (s1, s2) and an edge such that both
end nodes correspond to clusters from Sa, see Figure 32.2 In this case,
Gint(H \ RLa) is a path. Since a path is a special case of a tree and ac-
cording to Lemma 4.2, it has a feasible solution tree by paths.

Theorem 12.6. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph.
Let RLb = RL1,2

⋃
argmin(RLb2,3, ..., RL

b
mb−1,mb

, RLbmb,1
).

RLb is a feasible removal list of H.

Proof. RLb removes the separating edge (s1, s2) and an edge such that both
end nodes correspond to clusters from Sb, see Figure 32.3 In this case,
Gint(H \ RLb) is a path. Since a path is a special case of a tree and ac-
cording to Lemma 4.2, it has a feasible solution tree by paths.

Theorem 12.7. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph.
Let RL = argmin(RLa,b, RLa, RLb). RL is a minimum feasible removal list
of H.

Proof. According to Theorem 2.1, if Gint(H) contains a chordless cycle, H
has no feasible solution tree. Therefore, every removal list has to remove at
least two edges from the intersection graph, one from each cycle.

1. RLa,b chooses the minimal list, such that the list removes an edge with
both end nodes that correspond to clusters from Sa and an edge with
both end nodes that correspond to clusters from Sb, see Figure 32.1.

2. RLa chooses the minimal list, such that the list removes the separat-
ing edge (s1, s2) and an edge with both end nodes that correspond to
clusters from Sa, see Figure 32.2.
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Figure 32: Possible removals

3. RLb chooses the minimal list, such that the list removes the separat-
ing edge (s1, s2) and an edge with both end nodes that correspond to
clusters from Sb, see Figure 32.3.

RL is a minimum possible option from the three removal lists, so that H \RL
has a feasible solution tree by paths.

Now we consider insertion lists for two chordless cycles with a separating
edge (s1, s2) intersection graph.

Definition 12.8. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph.
Let Xa

i,i+1 = {(Ra
i

⋂
Ra

i+1)}, Xa
i,i+1 contains the vertices of the intersection

of Ra
i and Ra

i+1, for i ∈ {3, ...,m − 1}. Let Xb
i,i+1 = {(Rb

i

⋂
Rb

i+1)}, Xb
i,i+1

contains the vertices of the intersection of Rb
i and Rb

i+1, for i ∈ {3, ...,m−1}.

Let Xa
2,3 = {(S2

⋂
Ra

3)}, Xa
2,3 contains the vertices of the intersection of

S2 and Ra
3. Let Xb

2,3 = {(S2

⋂
Rb

3)}, Xb
2,3 contains the vertices of the inter-

section of S2 and Rb
3.

Let Xa
m,1 = {(S1

⋂
Ra

ma
)}, Xa

ma,1 contains the vertices of the intersection
of S1 and Ra

ma
. Let Xb

m,1 = {(S1

⋂
Rb

mb
)}, Xb

mb,1
contains the vertices of the

intersection of S1 and Rb
mb

.
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Definition 12.9. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph.
Choose arbitrarily an intersection {X1,2, X

a
2,3, ..., X

a
ma−1,ma

, Xa
ma,1}, denote by

Xa
j,j+1. Choose arbitrarily a vertex va ∈ Xa

j,j+1 .
Let ILva = {(va, S1), (va, S2), (va, R

a
3), ..., (va, R

a
j−1), (va, R

a
j+2), ..., (va, R

a
ma

)}.
Choose arbitrarily an intersection {X1,2, X

b
2,3, ..., X

b
mb−1,mb

, Xb
mb,1
}, denote

by Xb
j,j+1. Choose arbitrarily a vertex vb ∈ Xb

j,j+1 .
Let ILvb

= {(vb, S1), (vb, S2), (vb, R
b
3), ..., (vb, R

b
j−1), (vb, R

b
j+2), ..., (vb, R

b
mb

)}.

Definition 12.10. Let H =< V,S > be a hypergraph and two chordless
cycles with a separating edge (s1, s2) intersection graph.
Let ILva,vb

= ILva
⋃
ILvb.

Theorem 12.11. Let H =< V,S > be a hypergraph and two chordless
cycles with a separating edge (s1, s2) intersection graph. ILva,vb is a feasible
insertion list of H, where in H + ILva,vb, va ∈ Ra

i ∀i, vb ∈ Rb
i∀i and va, vb ∈

S1

⋂
S2.

Proof. Let P a
i be a path spanningXa

i , forRa
i ∈ Sa. Let P b

i be a path spanning
Xb
i , for Rb

i ∈ Sb. Let P a
i,i+1 be a path spanning Xa

i,i+1∀i . Let P b
i,i+1 be a

path spanning Xb
i,i+1∀i . Let P1,2 be a path spanning X1,2 . Let va, vb be the

chosen vertices from va ∈ Xa
j,j+1 and vb ∈ Xb

j,j+1. P1,2 is connected between
va and vb. P a

i,i+1 is connected between va and P a
i , ∀i. P b

i,i+1 is connected
between vb and P b

i , ∀i. Figure 33 presents a feasible solution by paths for
H + ILva,vb .

Theorem 12.12. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph. Let ILva,vb = ILva

⋃
ILvb.

ILva,vb is a minimum feasible insertion list of H, where in H + ILva,vb, va ∈
Ra
i ∀i, vb ∈ Rb

i∀i and va, vb ∈ S1

⋂
S2.

Proof. According to Theorem 12.11, ILva,vb is a feasible insertion list of H.
ILva inserts vertex va to ma − 2 clusters, according to Theorem 4.8, and

since CSTP is a special case of CSTT and according to Theorem 2.1, in
every insertion list there are at least m − 2 insertions, therefore, ILva is a
minimum feasible insertion list for H[Sa] which is a one chordless cycle. ILvb
inserts vertex vb to mb − 2 clusters, according to Theorem 4.8, and since
CSTP is a special case of CSTT and according to Theorem 2.1, in every
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Figure 33: Theorem 12.11 solution tree

insertion list there are at least m−2 insertions, therefore, ILvb is a minimum
feasible insertion list for H[Sb] which is a one chordless cycle. According to
[5], mRL(H) = mRL(H[S1, S2, R

a
3, ..., R

a
ma

]) + mRL(H[S1, S2, R
b
3, ..., R

b
mb

]) =
|ILva|+|ILvb| , therefore, ILva,vb is a minimum feasible insertion list of H.

Definition 12.13. Let H =< V,S > be a hypergraph and two chordless
cycles with a separating edge (s1, s2) intersection graph.
Choose arbitrarily a vertex vai,i+1 ∈ Xa

i,i+1, for i ∈ {2, ...,ma − 1}.
Let ILa

1 = {(vai,i+1, S1)| where vai,i+1 ∈ Xa
i,i+1, for i ∈ {2, ...,ma − 1}}.

Choose arbitrarily a vertex vbi,i+1 ∈ Xb
i,i+1, for i ∈ {2, ...,mb − 1}.

Let ILb
1 = {(vbi,i+1, S1)| where vbi,i+1 ∈ Xb

i,i+1, for i ∈ {2, ...,mb − 1}}.

Definition 12.14. Let H =< V,S > be a hypergraph and two chordless
cycles with a separating edge (s1, s2) intersection graph.
Let IL1 = ILa1

⋃
ILb1

Theorem 12.15. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph. IL1 is a feasible insertion
list of H.

Proof. Let P a
i be a path spanning of Xa

i , for Ra
i ∈ Sa. Let P b

i be a path
spanning of Xb

i , for Rb
i ∈ Sb. Let P a

i,i+1 be a path spanning of Xa
i,i+1 . Let

P b
i,i+1 be a path spanning of Xb

i,i+1 . Let P1,2 be a path spanning of X1,2 . Let
va1,i,i+1 be a vertex chosen from Xa

1,i,i+1, for i ∈ {2, ...,ma− 1}. Let vb1,i,i+1 be
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a vertex chosen from Xb
1,i,i+1, for i ∈ {2, ...,mb−1}. All va1,i,i+1 are connected

by a path va1,2,3, v
a
1,3,4, ..., v

a
1,ma−1,ma

and every intersection spanned by P a
i,i+1

is connected to the corresponding vertex va1,i,i+1. All vb1,i,i+1 are connected
by a path vb1,2,3, v

b
1,3,4, ..., v

b
1,mb−1,mb

and every intersection spanned by P b
i,i+1

is connected to the corresponding vertex vb1,i,i+1. P1,2 is connected between
va1,2,3 and vb1,2,3. Figure 34 presents a feasible solution by paths for H + IL1.

Figure 34: Theorem 12.15 solution tree

Theorem 12.16. Let H =< V,S > be a hypergraph and two chordless
cycles with a separating edge (s1, s2) intersection graph. IL1 = ILa1

⋃
ILb1 is

a minimum feasible insertion list of H.

Proof. According to Theorem 12.15, IL1 is a feasible insertion list of H.
|ILa1| = ma − 2 by definition. According to Theorem 4.8, and since CSTP
is a special case of CSTT and according to Theorem 2.1, in every insertion
list there are at least m− 2 insertions. Therefore, ILa1 is a minimum feasible
insertion list for H[Sa] which is a one chordless cycle. |ILb1| = mb − 2 by
definition. According to Theorem 4.8, and since CSTP is a special case
of CSTT and according to Theorem 2.1, in every insertion list there are
at least m − 2 insertions. Therefore, ILb1 is a minimum feasible insertion
list for H[Sb] which is a one chordless cycle. According to [5], mRL(H) =
mRL(H[S1, S2, R

a
3, ..., R

a
ma

]) + mRL(H[S1, S2, R
b
3, ..., R

b
mb

]) = |ILa1| + |ILb1| ,
therefore, IL1 is a minimum feasible insertion list of H.
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Observation 12.17. Similarly, Theorems 12.15 and 12.16, hold for IL2 =
ILa2

⋃
ILb2, such that ILa2 = {(va2,3, S2), (v

a
3,4, S2), ..., (v

a
ma−1,ma

, S2), (v
a
ma,1, S2)}

and ILb2 = {(vb2,3, S2), (v
b
3,4, S2), ..., (v

b
mb−1,mb

, S2), (v
b
mb,1

, S2)}.

13 Two Chordless Cycles With A Separating

Path Intersection Graphs

In this section we consider a Two Chordless Cycles With a Separating Path
intersection graph, see Figure 35. We describe the conditions for a feasible
CSTP solution and suggest a minimum feasible removal list and a minimum
feasible insertion list.

Figure 35: Two Chordless Cycles With a Separating Edge intersection graph

Definition 13.1. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph. The removal of the nodes
{s1, s2, s3} and edges (s1, s2) and (s2, s3) creates two connected components
corresponding to the clusters collections Sa,Sb. Let Sa = {Ra

4, ..., R
a
ma
} and

Sb = {Rb
4, ..., R

b
mb
}, such that ma and mb the number of clusters in Sa and

Sb, respectively, see Figure 35.
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Theorem 13.2. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph. If max{ma,mb} ≥ 2,
H has no feasible solution tree by paths.

Proof. If max{ma,mb} ≥ 2, at least one of the cycles is a chordless cycle with
at least four nodes. Since CSTP is a special case of CSTT , then according
to Theorem 2.1, H has no feasible solution tree by paths.

Now we consider removal lists for two chordless cycles with a separating
path (s1, s2, s3) intersection graph.

Definition 13.3. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
Let Xa

i,i+1 = {(Ra
i

⋂
Ra

i+1)}, Xa
i,i+1 contains the vertices of the intersection

of Ra
i and Ra

i+1, for i ∈ {4, ...,ma − 1}. Let Xb
i,i+1 = {(Rb

i

⋂
Rb

i+1)}, Xb
i,i+1

contains the vertices of the intersection of Rb
i and Rb

i+1, for i ∈ {4, ...,mb−1}.

Let Xa
3,4 = {(S3

⋂
Ra

4)}, Xa
3,4 contains the vertices of the intersection of

S3 and Ra
4. Let Xb

3,4 = {(S3

⋂
Rb

4)}, Xb
3,4 contains the vertices of the inter-

section of S3 and Rb
4.

Let Xa
ma,1 = {(S1

⋂
Ra

ma
)}, Xa

ma,1 contains the vertices of the intersection
of S1 and Ra

ma
. Let Xb

mb,1
= {(S1

⋂
Rb

mb
)}, Xb

mb,1
contains the vertices of

the intersection of S1 and Rb
mb

.

Definition 13.4. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
Let RLa

i,i+1 = {(v,Ra
i )|v ∈ Xa

i,i+1} for i ∈ {4, ...,ma − 1} and let RLb
i,i+1 =

{(v,Rb
i)|v ∈ Xb

i,i+1}, for i ∈ {4, ...,mb − 1} .

Let RLa
3,4 = {(v, S3)|v ∈ Xa

3,4} and let RLb
3,4 = {(v, S2)|v ∈ Xb

3,4} .

Let RLa
ma,1 = {(v,Ra

ma
)|v ∈ Xa

m,1} and let RLb
mb,1

= {(v,Rb
mb

)|v ∈
Xb
m,1} .

Definition 13.5. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
Let RLa,b = argmin(RLa3,4, ..., RL

a
ma−1,ma

, RLama,1)
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⋃
argmin(RLb3,4, ..., RL

b
mb−1,mb

, RLbmb,1
).

Theorem 13.6. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
RLa,b is a feasible removal list of H.

Proof. RLa,b removes an edge with end nodes that correspond to clusters
from Sa and an edge with end nodes that correspond to clusters from Sb, see
Figure 36. In this case, Gint(H \ RLa,b) is a tree. According to Lemma 4.2,
it has a feasible solution tree by paths.

Figure 36: Gint(H \RLa,b)

Theorem 13.7. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
Let RLa = argmin(RLa3,4, ..., RL

a
ma−1,ma

, RLama,1)
⋃
argmin(RL1,2, RL2,3).

RLa is a feasible removal list of H.

Proof. RLa removes an edge with end nodes that correspond to clusters from
Sa and an edge from the separating path s1, s2, s3), see Figure 37. In this
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case, Gint(H \ RLa) is a tree. According to Lemma 4.2, it has a feasible
solution tree by paths.

Figure 37: Gint(H \RLa)

Theorem 13.8. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
Let RLb = argmin(RLb3,4, ..., RL

b
mb−1,mb

, RLbmb,1
)
⋃
argmin(RL1,2, RL2,3).

RLb is a feasible removal list of H.

Proof. RLb removes an edge with end nodes that correspond to clusters from
Sb and an edge from the separating path (s1, s2, s3), see Figure 38. In this
case, Gint(H \ RLb) is a tree. According to Lemma 4.2, it has a feasible
solution tree by paths.

Now we consider insertion lists for two chordless cycles with a separating
path (s1, s2, s3) intersection graph.

Definition 13.9. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
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Figure 38: Gint(H \RLb)

Choose arbitrarily a vertex vai,i+1 ∈ Xa
i,i+1, for i ∈ {3, ...,ma − 1}. Let ILa

1 =
{(va3,4, S1), ..., (v

a
ma−1,ma

, S1)}.

Choose arbitrarily a vertex vbi,i+1 ∈ Xb
i,i+1, for i ∈ {4, ...,mb − 1} and

choose arbitrarily a vertex vbmb,1
∈ S1

⋂
Rb
mb

. Let ILb
3 = {(vb4,5, S3), ..., (v

b
mb,1

, S3)}.

Let IL1,2,3 = (X2,3, S1)
⋃

(X1,2, S3).

Definition 13.10. Let H =< V,S > be a hypergraph and two chordless
cycles with a separating path (s1, s2, s3) intersection graph.
Let ILa,b

1,3 = ILa1
⋃
ILb3

⋃
IL1,2,3.

Theorem 13.11. Let H =< V,S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, s3) intersection graph.
ILa,b1,3 is a feasible insertion list for H.

Proof. Let P a
i be a path spanning Xa

i , for Ra
i ∈ Sa. Let P b

i be a path
spanning Xb

i , for Rb
i ∈ Sb. Let P a

i,i+1 be a path spanning Xa
i,i+1 . Let P b

i,i+1

be a path spanning Xb
i,i+1 . Let P1, P2, P3 be the paths spanning X1, X2, X3,

respectively. Let P1,2,3 be the path spanning X1,2,3. Let vai,i+1 be a vertex
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chosen from Xa
1,i,i+1. Let vbi,i+1 be a vertex chosen from Xb

3,i,i+1. All vai,i+1

are connected by a path va3,4, ..., v
a
ma−1,ma

and every intersection spanned by
P a
i,i+1 is connected to the corresponding vertex vai,i+1. All vbi,i+1 are connected

by a path vb4,5, ..., v
b
mb−1,mb

, vbmb,1
and every intersection spanned by P b

i,i+1 is
connected to the corresponding vertex vbi,i+1. P1,2,3 is connected between va3,4
and vbmb,1

. Figure 39 presents a feasible solution by paths for H + ILa,b1,3.

Figure 39: Theorem 13.11 solution tree

14 Triangular Cactus Intersection Graph

In this section we consider a Triangular Cactus Intersection Graph. We de-
scribe the conditions for a feasible CSTP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.

Definition 14.1. Let H =< V,S > be a hypergraph and a triangular cactus
intersection graph.
Gint(Si, Sl, Sr) is a triangular leaf on Si if Gint(Si, Sl, Sr) is connected to
Gint(H \H[Si, Sl, Sr]) with only one edge, which touches Si, see Figure 40.

Theorem 14.2. ([5] ) Consider a hypergraph H = 〈V,S〉 with a connected
intersection graph Gint(S). If node s′, whose corresponding cluster is S ′, is a
leaf of Gint(S), then H has a feasible solution tree for CSTP problem if and
only if H[S\S ′] has a feasible solution tree for CSTP problem.

69



Theorem 14.3. ([5] ) Consider a hypergraph H = 〈V,S〉 with T a feasible
solution tree for CSTP problem. For any set of vertices U ⊆ (Si\(

⋃
j 6=i Sj))

and RLU = {(U, Si)}, for Si ∈ S, hypergraph H\RLU has a feasible solution
tree for CSTP problem.

Theorem 14.4. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a triangular cactus intersection graph. If every triangular in Gint(H) has
a feasible solution tree by paths, then H has a feasible solution tree by paths.

Proof. Proof by induction on k, the number of nodes in Gint(H).
If k ≤ 2 then Gint(H) corresponds to one or two clusters, therefore

Gint(H) is a tree. According to Lemma 4.2, there exists a feasible solution
tree by paths for H.

If k = 3 then Gint(H) corresponds to three clusters. If Gint(H) is a
triangle then according to the theorem’s assumption, H has a feasible solution
tree by paths. Else, Gint(H) is a tree and according to Lemma 4.2, has a
feasible solution tree by paths for H.

Suppose the claim is correct for k < m. We now prove it for k = m. If
Gint(H) has a node s∗ which is a leaf, then according to the induction hypoth-
esis H \S∗ has a feasible solution tree, and according to Theorem 14.2, H has
a feasible solution tree. Otherwise, Gint(H) contains a triangular leaf on si,
denote this triangular as H[Si, Sl, Sr], see Figure 40. Let U = Si

⋂
(Sl

⋃
Sr)

those vertices are in Si, but not in V \ (Si
⋃
Sl

⋃
Sr}). According to the

induction hypothesis, H[S \ {Sl, Sr}] has a feasible solution tree by paths.
According to Theorem 14.3, H[S \ {Sl, Sr}] \ {U, Si} has a feasible solution
tree by paths, denote the corresponding tree as T ′. Let v be the last vertex
in path T ′[Si \U ]. According to the theorem assumption and Theorem 14.3,
H[Si, Sl, Sr] has a feasible solution tree by paths, and according to Theorem
14.3, H[U, Sl, Sr] also has a feasible solution tree by paths, denoted as T ′′.
According to Corollary 5.4, H[U, Sl, Sr] has four possible solution trees, see
Figure 41.
If |Xi,r,l| = 1 let vi,l,r be the corresponding vertex, else let PU,r,l the path
spanning Xi,r,l. Let PU,r be the path spanning Xi,r. Let PU,l be the path
spanning Xi,l. Let Pl,r be the path spanning Xl,r. Let Pr be the path span-
ning Xr. Let Pl be the path spanning Xl. If |Xi,r,l| = 1, let u be the last
vertex in path PU,l. Add an edge (v, u) to connect T ′ and T ′′. Let T be the
new tree (see Figure 41.1). T is a feasible solution tree by paths of H.
Let u be the last vertex in path PU,r. Add an edge (v, u) to connect T ′ and
T ′′. Let T be the new tree (see Figure 41.2). T is a feasible solution tree by
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paths of H.
Let u be the last vertex in path PU,l. Add an edge (v, u) to connect T ′ and
T ′′. Let T be the new tree (see Figure 41.3). T is a feasible solution tree by
paths of H.
Let u be the last vertex in path PU,r. Add an edge (v, u) to connect T ′ and
T ′′. Let T be the new tree (see Figure 41.4). T is a feasible solution tree by
paths of H.

Figure 40: Theorem 14.4 H[Si, Sl, Sr]

Theorem 14.5. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a triangular cactus intersection graph. If there is at least one triangular
in Gint(H) that does not have a feasible solution tree by paths, then H has
no feasible solution tree by paths.

Proof. According to Lemma 4.2, H does not have a feasible solution tree by
paths.

Now we consider removal list for triangular cactus intersection graph.

Lemma 14.6. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a triangular cactus intersection graph.
Let n be the number of triangles in Gint(H). Let RLi be a minimum feasible
removal list for triangle Ti, i ∈ {1, .., n}. RLi, RLj are pairwise disjoint, for
i, j ∈ {1, .., n} , i 6= j.
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Figure 41: Theorem 14.4 possible solution trees

Proof. Let RLi be the minimum removal list for H[Si, Si+1, Si+2] and RLj be
the minimum removal list for H[Sj, Sj+1, Sj+2]. If the intersection graph of
H[Si, Si+1, Si+2] and the intersection graph of H[Sj, Sj+1, Sj+2] do not have
a node in common, then according to Theorem 5.8, RLi, RLj are pairwise
disjoint. If the intersection graph of H[Si, Si+1, Si+2] and the intersection
graph ofH[Sj, Sj+1, Sj+2] have a node in common, then according to Theorem
5.8, RLi, RLj are pairwise disjoint, otherwise, Gint(H) has two triangles with
two nodes in common. Contradicting the structure of a triangular cactus
graph.

Theorem 14.7. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a triangular cactus intersection graph.
Let n be the number of triangles in Gint(H). Let RLi be a minimum feasible
removal list for triangle Qi, i ∈ {1, .., n}. RL ≡

⋃n
i=1RLi is a minimum

feasible removal list of H.

Proof. According to Theorem 14.4, if every triangle in the triangular cac-
tus intersection graph has a feasible solution tree by paths, then H has a
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feasible solution. Since RLi is a minimum feasible removal list for triangle
Qi, Qi \ RLi, for every i ∈ {1, .., n}, has a feasible solution tree. Accord-
ing to Theorem 14.4, H \

⋃n
i=1RLi has a feasible solution tree. According

to Lemma 14.6, mRL(H) ≤
∑n

i=1 |RLi| =
∑n

i=1mRLi. RL is a feasible re-
moval list of H, therefore, a feasible removal list for Qi, for every i ∈ {1, .., n},
|RL| =

∑n
i=1 |RL[Qi]| ≥

∑n
i=1mRLi. Hence and according to Theorem 14.4,

RL ≡
⋃n
i=1RLi is a minimum feasible removal list of H.

Now we consider insertion lists for triangular cactus intersection graph.

Lemma 14.8. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a triangular cactus intersection graph.
Let n be the number of triangles in Gint(H). Let ILi be a minimum feasible
insertion list for triangle Qi, i ∈ {1, .., n}. ILi, ILj are pairwise disjoint, for
i, j ∈ {1, .., n}, i 6= j.

Proof. Let ILi be a minimum insertion list for H[Si, Si+1, Si+2] and ILj be
a minimum insertion list for H[Sj, Sj+1, Sj+2]. If the intersection graph of
H[Si, Si+1, Si+2] and the intersection graph of H[Sj, Sj+1, Sj+2] do not have
a node in common, then according to Theorem 5.10, ILi, ILj are pairwise
disjoint. If the intersection graph of H[Si, Si+1, Si+2] and the intersection
graph of H[Sj, Sj+1, Sj+2] have a node in common, then according Theorem
5.10, to gain feasibility by using insertions can only be achieved by inserting
vertices from Xi,i+1, Xi,i+2 or Xi+1,i+2 to Xi,i+1,i+2 and from Xj,j+1, Xj,j+2 or
Xj+1,j+2 to Xj,j+1,j+2. Therefore, ILi, ILj are pairwise disjoint. Otherwise,
Gint(H) has two triangles with two nodes in common. Contradicting the
structure of triangular cactus intersection graph.

Theorem 14.9. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a triangular cactus intersection graph.
Let n be the number of triangles in Gint(H). Let ILi be a minimum feasible
insertion list for triangle Qi, i ∈ {1, .., n}. IL ≡

⋃n
i=1 ILi is a minimum

feasible insertion list of H.

Proof. Let Qi = H[Si, Si+1, Si+2]. Suppose Qi does not have a feasible solu-
tion, to gain feasibility by using insertions can only be achieved by inserting
vertices from Xi,i+1, Xi,i+2 or Xi+1,i+2 to Xi,i+1,i+2. According to Lemma 14.8,
ILi, ILj, for i, j ∈ {1, .., n}, i 6= j are pairwise disjoint. Since ILi is a min-
imum feasible insertion list for triangle Qi, Qi + ILi, for every i ∈ {1, .., n},
has a feasible solution tree. According to Theorem 14.4, H +

⋃n
i=1 ILi has
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a feasible solution tree. According to Lemma 14.8, mIL(H) ≤
∑n

i=1 |ILi| =∑n
i=1mILi. IL is a feasible removal list of H, therefore, a feasible insertion

list for Qi, for every i ∈ {1, .., n}, |IL| =
∑n

i=1 |IL[Qi]| ≥
∑n

i=1mILi. Hence,⋃n
i=1 ILi is a minimum feasible insertion list.

15 Cactus Intersection Graphs

In this section we consider a Cactus Intersection Graph with cycles with
length at least 4, see Figure 42. We describe the conditions for a feasible
CSTP solution and suggest a removal list.

Definition 15.1. Let H =< V,S > be a hypergraph and a cactus intersection
graph.
Gint(Si, ..., Sr) is a cycle leaf on Si if Gint(Si, ..., Sr) is connected to Gint(H\
H[Si, ..., Sr]) with only one edge, which touches Si, see Figure 42.

Theorem 15.2. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm},
m ≥ 4 and a cactus intersection graph. If Gint(H) has at least one cycle with
length at least 4, H has no feasible solution tree by paths.

Proof. Since CSTP is a special case of CSTT and according to Theorem
2.1, H has no feasible solution tree by paths.

Theorem 15.3. Let H =< V,S > be a hypergraph, with S = {S1, S2, S3, ..., Sm}
and a cactus intersection graph. Let n be the number of cycles in Gint(H).
Let RLi be a feasible removal list for cycle Ci, i ∈ {1, .., n}. RL ≡

⋃n
i=1RLi

is a feasible removal list of H.

Proof. Proof by induction on k, the number of nodes in Gint(H).
If k ≤ 4, if Gint(H) is a tree, then RL = ∅ and according to Theorem 4.2,

H has a feasible solution tree by paths. If Gint(H) is a cycle, then there is
only one cycle C1, such that RL1 is a minimum feasible removal list for C1

and according to the theorem assumption H \RL has a feasible solution tree
by paths

Suppose the claim is correct for k < m. We now prove it for k = m. If
Gint(H) has a node s′ which is a leaf. Let C1, ..., Cn be the cycles in H. Since
s′ is a leaf, C1, ..., Cn are also cycles in the intersection graph of H[S \ S ′],
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then according to the induction hypothesis H[S\S ′] \RL has a feasible solu-
tion tree, and according to Theorem 14.2, H \RL has a feasible solution tree.
Otherwise, Gint(H) contains a cycle leaf on si, denote this cycle asH[Si, Sl, ..., Sr, Si]
and suppose this is cycle Cn, see Figure 42.

Let U = Si
⋂

(
⋃r
j=l Sj), these vertices are in Si, but not in V (S\{Si

⋃
Sl

⋃
..
⋃
Sr}).

According to the induction hypothesis, H[S \ {Sl, ..., Sr}] \
⋃n
i=1RLi has a

feasible solution tree by paths. According to Theorem 14.3, H[S \ {Sl, Sr} \
(U, Si)] \

⋃n
i=1RLi has a feasible solution tree by paths, denoted as T ′. Let v

be the last vertex in the path T ′[Si \ U ]. According to the theorem assump-
tion and Theorem 14.3, H[Si, Sl, ..., Sr] \RLn has a feasible solution tree by
paths, then H[U, Sl, ..., Sr] \ RLn also has a feasible solution tree by paths,
denoted as T ′′. According to Theorem 11.2, RLn represents the removal of
one of the edges of the cycle corresponding to H[Si, Sl, ..., Sr, Si], so that,
H[Si, Sl, ..., Sr, Si] \ RLn has a solution which is a path. Let u be the last
vertex in this path, such that u ∈ U . Add an edge (v, u) to connect T ′ and
T ′′. Let T be the new tree, see Figure 43. T is a feasible solution tree by
paths of H \RL. Hence, H \RL has a feasible solution tree by paths.

Figure 42: A cycle leaf
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Figure 43: Theorem 15.3 solution tree

16 Algorithm For Solving Triangle Free Graph

In this section we consider a Triangle Free Intersection Graph, a graph which
does not contain any triangles. Hence, every cycle in this graph contains at
least 4 nodes. We describe the conditions for a feasible CSTP solution and
introduce an algorithm for finding a minimum feasible removal list.

Theorem 16.1. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a triangle free intersection graph. If Gint(H) has at least one cycle, H
has no feasible solution tree by paths.

Proof. Since Gint(H) is a triangle free intersection graph then at least one
cycle contains at least 4 nodes. Since CSTP is a special case of CSTT
according to Theorem 2.1, H has no feasible solution tree by paths.

Definition 16.2. A maximum spanning tree (MxST) a spanning tree
whose weight (the sum of weights of its edges) is maximum.

Theorem 16.3. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a triangle free intersection graph. Let Si, Sj, Sk be clusters in S, for
every i, j, k ∈ {1, ...,m} |Xi,j,k| = 0.

Proof. Suppose by contradiction that, for i, j, k ∈ {1, ...,m}, |Xi,j,k| > 0. In
Gint(H) nodes si, sj, sk form a triangle shape, in contradiction to Gint(H)
being a triangle free intersection graph. Furthermore, every cluster can have
at most one intersection with another cluster in H.
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Algorithm 3: TrianglesFreeMinRemovalList

Input : Triangle free intersection graph
Output: Minimum removal list for triangle free intersection graph
CRL = [ ];
Set wi,j = |Xi,j| to be the weight of edge (si, sj), for
(si, sj) ∈ Gint(H);

Let Gw be Gint(H) with weights;
Let Tmax be a maximum spanning tree of Gw;
Let Erm = {(s′i1 , s

′′
i1

), ..., (s′ik , s
′′
ik

)} be the set of edges which are in

Gw and not in Tmax;

Let CRL =
⋃k
j=1(S

′
ij

⋂
S ′′ij , S

′
ij

)

return CRL;

Theorem 16.4. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a triangle free intersection graph. Algorithm TrianglesFreeMinRemoval-
List returns a feasible removal list for H.

Proof. According to the algorithm, the removal of CRL corresponds to the
removal of all the edges in Erm from Gw, thus changing the intersection graph
into a tree. Therefore, the intersection graph of H \CRL is a tree, according
to Lemma 4.2, it has a feasible solution tree by paths.

Theorem 16.5. Let H =< V,S > be a hypergraph, with S = {S1, ..., Sm}
and a triangle free intersection graph. Algorithm TrianglesFreeMinRemoval-
List returns a minimum feasible removal list for H.

Proof. If RL is a feasible removal list, then Gint(H \RL) contains no cycles.
Otherwise, if Gint(H \RL) contains a cycle with at least 4 nodes then accord-
ing to Theorem 16.1, H does not have a feasible solution tree. According
to Theorem 11.4, any feasible removal list removes at least one edge from
each cycle, so that Gint(H \ RL) will be cycles free. In addition, if RL is a
minimum feasible removal list, Gint(H \ RL) is a connected graph. Other-
wise, the minimum feasible removal list would have removed one edge less,
in contradiction to RL being a minimum feasible removal list. Therefore,
if RL is a minimum feasible removal list then Gint(H \ RL) is a tree, by
removing edges from the intersection graph. Finding the set of edges with
minimum weight, whose removal from the intersection graph creates a tree,
is equivalent to finding a maximum spanning tree. According to Theorem
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16.4, CRL is a feasible removal list and represents the removals made to gain
a maximum spanning tree. Therefore, CRL is a minimum feasible removal
list for H.

17 Summary and Further Research

Given a hypergraph, the research considers and investigates intersection
graph of specific shapes, for each shape we describe the conditions for feasibil-
ity regarding a CSTP solution. When there is no feasible solution we suggest
a minimum feasible removal list and a minimum feasible insertion list. The
research starts by looking at intersection graphs with triangular base shapes,
such as a triangular, diamond, butterfly, windmill, vertex connected triangu-
lar chain and an edge connected triangular chain. The research deals with
intersection graphs with special characteristics, where it is easy to show that
there is no feasible solution for the given hypergraph. The first intersection
graph is a single chordless cycle, followed by an intersection graph with two
chordless cycles connected by separating edge or a separating path of size
three. A significant part of the research focus on intersection graph which
is a triangular cactus tree. We describe the conditions for a feasibility and
suggest a minimum removal list or a minimum insertion list. When the in-
tersection graph is a cactus tree, we suggest a minimum removal list. We
also provide an algorithm that finds a minimum feasible removal list for a
triangular free intersection graph.

We would like to continue our research and investigate more complex
structures of intersection graphs, for example a 4-clique. Find conditions
for feasibility and suggest a minimum feasible removal list and a minimum
feasible insertion list.
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