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1 Introduction

Let H = (V,S) be a hypergraph, where V is a set of vertices and S is a set
of not necessarily disjoint clusters (also known as hyperedges) Si,...,Snm,
S; CV fori € {1,...,m}. The Clustered Spanning Tree by Paths prob-
lem, denoted by CSTP, is to decide whether there exists a path-based tree
support, which is a tree spanning the vertices of V', such that each cluster
induces a path.

Since the majority of hypergraphs do not have a feasible solution tree, the
question of how to gain feasibility is of great importance. This paper focuses
on finding feasible solution trees by removing or inserting a minimum number
of vertices from or into the clusters of the given hypergraphs.

The main idea of this paper is to introduce a minimum feasible removal
list and a minimum feasible insertion list for a given hypergraph H. A feasi-
ble removal (insertion) list contains a list of vertices and clusters, such that
removing (inserting) those vertices from (into) the appropriate clusters cre-
ates a hypergraph with a feasible solution tree. We consider intersection
graph, whose nodes represent the clusters of the hypergraph and an edge ex-
ists between two nodes if and only if the corresponding clusters intersect. We
focus on cases where the intersection graph has a specific shape, specifically,
triangular base shapes, such as a diamond and a butterfly. The research
also deals with intersection graphs with special characteristics, where it is
easy to show that there is no feasible solution for the given hypergrah. For
example, an intersection graph which is a single chordless cycle, or an inter-
section graph with two chordless cycles connected by a separating edge or a
separating path of size three. We also consider cactus tree intersection graph
and triangle free intersection graph.

Throughout this paper, we assume that the intersection graph of H is
connected. Otherwise, a feasible solution tree of H can be constructed by
properly adding edges between the feasible solution trees of each connected
component, if they exist. Moreover, when no feasible solution tree exists, the
union of feasible minimum removal (insertion) lists of the various connected
components, creates a feasible minimum removal (insertion) list for the given
hypergraph.

Swaminathan and Wagner in [10] introduce a polynomial time algorithm,
which constructs a feasible solution tree for CSTP problem, if one exists.
Brandes et al. in [2] give a polynomial time algorithm that computes a feas-
bile solution tree for CSTP problem, if it exists. Their algorithm connects



subpaths in a specific order using a special coloring of their end vertices.

A generalization of the CSTP problem is the Clustered Spanning Tree
by Trees problem, denoted by CSTT. This problem aims to decide whether
there exists a tree-based tree support, which is a tree spanning the vertices
of V', such that each cluster induces a subtree. Since CSTP is a special case
of CSTT, obviously the necessary and sufficient conditions presented in [8]
for the CSTT problem are necessary conditions also for CSTP problem, but
not sufficient.

Considering the feasibility question of CSTP, in [5] they break the in-
tersection graph of H into smaller instances, when the intersection graph
contains a cut node or a separating edge. They prove how the feasibility
question of every connected component may be used to decide whether the
original hypergraph has a feasible solution tree. In cases where a connected
component does not have a feasible solution, they consider changes of the
given hypergraph to gain feasibility.

An important known and more restricted version of the CSTP problem
is where the solution tree is required to be a path, such that every cluster
induces a subpath in the solution path. This is the feasibility vertsion of
the clasterd T'SP problem. A solution to this problem can also be presented
as testing for the Consecutive Ones Property, denoted by COP. A binary
matrix has the COP when there is a permutation of its rows that gains
the 1’s consecutive in every column. In [1] Booth and Lueker introduce
a data structure called a PQ-tree. PQ-trees can be used to represent the
permutations of the vertices in V| such that the vertices of each cluster of S
are required to occur consecutively.

We would like to suggest a few possible applications for CSTP problem.
The first one comes from the area of communication networks and is pre-
sented by Tanenbaum and Wetherall in [11]. Given a complete graph where
each vertex represents a customer, each edge represents a link between two
customers, and there is a collection of not necessarily disjoint clusters of ver-
tices where each cluster represents a group of customers. The problem is
to construct a communication network in such a way that each cluster of
vertices from the given collection induces a path. When using a minimum
number of edges, the resulting network is a tree. Note that when no feasi-
ble solution tree exists, we consider removing some customers from some of
the groups, or inserting some customers into some of the groups, in order to
achieve feasibility.

An important use for CSTP problem, comes from the area of VLSI design,
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as is described by Johnson and Pollak in [6]. The vertices of the hypergraph
represent electric components and the clusters represent electric subcircuits
that should be wired together. The problem is to construct a hypergraph
in such a way that each cluster of vertices from the given collection induces
a path. For VLSI design it is also of most importance to gain proper hy-
pergraph visualization. Note that when no feasible solution tree exists, we
consider removing some components from some of the subcircuits, or in-
serting some components into some of the subcircuits, in order to achieve
feasibility.

This paper is organized as follows: Section 2 describes the connection
between the CSTP and CSTT problems. Section 3 contains definitions that
will be used throughout the work. Section 4 contains properties relevant
to all the paper. Section 5 deals with triangle intersection graph. Section
6 deals with diamond intersection graph. Section 7 deals with butterfly
intersection graph. Section 8 deals with windmill intersection graph. Section
9 deals with vertex connected triangle chain intersection graph. Section
10 deals with edge connected triangle chain intersection graph. Section 11
deals with one chorless cycle intersection graph. Section 12 deals with two
chordless cycles with a separating edge intersection graph. Section 13 deals
with two chordless cycles with a separating path intersection graph. Section
14 deals with triangular cactus intersection graph. Section 15 deals with
cactus intersection graph. Section 16 deals with the triangle free intersection
graph.

2 CSTP Versus CSTT

Consider the general following problem: Let H = < V.S > be a hypergraph,
where V' is a set of vertices and & = {S1,...,Sn} a set of not necessarily
disjoint clusters, S; C V, for 1 < i < m . The Clustered Spanning Tree by
Trees problem, denoted by CSTT, is to decide whether there exists a tree
spanning the vertices in V', such that each cluster induces a subtree.

Definition 2.1. A chordless cycle in a graph is a cycle with at least four
vertices, which does not contain any chord. A graph is chordal when it does
not contain any chordless cycle.

Definition 2.2. Let S = {S1,...,Sn} be a family of subsets. S satisfies
the Helly Property if the following holds: For every 8" C S, if every pair



members of S' has a common element, then all the members of S’ have a
common element. In other words, if every S;, S; € S’ satisfy S;NS; # O then

mSiGS' SZ 7é @

The CSTP problem is in fact a restricted case of CSTT, as paths are a
restricted case of trees. For the CSTT problem, it is proved in [3], [4], [9] and
summarized in [8], necessary and sufficient conditions for a feasible solution.

Theorem 2.3. A hypergraph H = < G,S > has a feasible solution tree by
trees if and only if H satisfies the Helly property and its intersection graph is
chordal.

Since CSTP is a special case of CSTT, the above theorem gives necessary
conditions for CSTP, but not sufficient.

Throughout this work we assume H satisfies the Helly property, otherwise
it is clear that H does not have a feasible solution tree by paths.

3 Definitions

In this section we introduce definitions that are used throughout the work.

Definition 3.1. Let H =<V, § > be a hypergraph with vertex set V and S

={S1,...,Sn} a set of not necessarily disjoint clusters. The intersection
graph of H, denoted by Gint(S), is defined to be a graph whose set of nodes
is {S1,...,Sm}, where s; corresponds to S;, for i € {1,...,m}, and an edge

(si,8;) exists if S;(S; # 0 .

Definition 3.2. Let H =< V,§ > be a hypergraph with vertex set V and
S = {51,...,Sn} a set of not necessarily disjoint clusters. Let &' C S

be a set of clusters. We define G[S'] to be the graph whose vertezr set is
V(S') = Ug,cs Si and cluster set is S'.

Definition 3.3. Given a tree T which spans the vertices of V', the subtree of
T induced by V', for V! CV, denoted by T[V"’], is defined to contain all the
vertices of V' and all the edges of T whose both endpoints are in V.

Definition 3.4. v* is a cut node of a connected graph G if G contains node
v* and deleting v* from G disconnects G into & connected components, for
§£>2.



Definition 3.5. Let H =< VS > be a hypergraph with vertex set V and S
= {51, 52,53} a set of clusters. A triangular intersection graph of H,
is an intersection graph whose nodes set is {s1, sq2,$3}, and its edges set is

{(s1,52), (81, 83), (52, 83) }-

Definition 3.6. Let H =<V, S8 > be a hypergraph with vertex set V and S
= {54, 52,53,54} a set of clusters. A diamond intersection graph on
S1,S2 of H, is an intersection graph whose nodes set is {s1, sa, 83,4}, and
its edges set is {(s1, S2), (81, 83), (S1, 84), (S2, $3), (2, 84) }-

Definition 3.7. Let H =< V.8 > be a hypergraph with vertex set V and
S ={51,...,Sn} a set of clusters. A butterfly intersection graph on
S1,S2 of H, is an intersection graph whose nodes set is {s1, S2, ..., Sm} and
its edges set is {(s1, S2), (81, i), (S2,8:) | i € {3,...,m}}.

Fori € {3,...,m}, a wing in a butterfly intersection graph on Sy, Ss, is
a sub-graph of the intersection graph, whose nodes set is {s1, S2,s;} and its
edges set is {(s1, $2), (S1, Si), (82, 8:) }-

Definition 3.8. Let H =< V,§ > be a hypergraph with vertex set V and
S ={51,...,Sn} a set of clusters. A windmill intersection graph on
S1 of H, is an intersection graph with mT’l triangular intersection graphs
connected by one node which s s;.

Definition 3.9. Let H =<V, S8 > be a hypergraph with vertex set V and S
={S1,...,Sn} a set of clusters. A vertex connected triangular chain
intersection graph of H, is defined to be an intersection graph with mT’l
triangular intersection graphs. Fach triangular is connected to its neighbors
by one different node.

Definition 3.10. Let H =< V.S > be a hypergraph with vertex set V and S
={S1,...,Sn} a set of clusters. An edge connected triangular chain
intersection graph of H, is defined to be an intersection graph with m — 2
triangular intersection graphs. Each triangular is connected to its neighbors
by one different edge.

Definition 3.11. Let H =< V,§ > be a hypergraph with vertex set V and S
={S1,...,5n} a set of clusters. A chordless cycle is a cycle with at least
four nodes, which does not contain any chords.

Definition 3.12. Let H =< V., § > be a hypergraph with vertex set V and
S ={S51,...,Sn} a set of clusters. A two chordless cycles with a
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separating edge intersection graph of H, is defined to be an intersec-
tion graph which contains a separating edge (s1, s3), whose removal of nodes
{s1, 82} and edge (s1,s2) creates two connected components corresponding to
the clusters collections S,, Sy. However, the intersection graph remains con-
nected if we remove only one of the vertices sy or ss.

Definition 3.13. Let H =< V., § > be a hypergraph with vertex set V' and
S = {S1,...,8n} a set of clusters. A two chordless cycles with a
separating path intersection graph of H, is defined to be an intersection
graph which contains a separating path (s1, ..., s4), wheret > 3, whose removal
of nodes {s1, ..., 8¢} and all edges related to these nodes creates two connected
components corresponding to the clusters collections S,,S,. However, the
intersection graph remains connected if we remove only one of the vertices
S1y ey St

Definition 3.14. Let H =< V., § > be a hypergraph with vertex set V and
S ={S1,...,Sn} a set of clusters. A cactus intersection graph of H,
1s an intersection graph which is a connected graph in which any two simple
chordless cycles have at most one node in common.

Definition 3.15. Let H =< V| § > be a hypergraph with vertex set V and
S ={51,...,9n} a set of clusters. A triangular cactus intersection
graph of H, is a cactus intersection graph such that each cycle has length
three.

Definition 3.16. Let H =< V. § > be a hypergraph with vertex set V and
S ={S1,...,Sn} a set of clusters. A triangle free intersection graph
of H, is a graph which does not contain any triangles. Hence, every cycle in
this graph contains at least 4 nodes.

Definition 3.17. ForV 1 <i<m, let X; =S;\U{S: | r #1i,1 <r < m},
X; contains the vertices of S; that do not appear in any other cluster.

Definition 3.18. V1 <i,5 <m, j # 4, let X5 = (Si[1S;) \U{S: | r #1,j,1 <r <m},
X, j contains the vertices of the intersection of S; and S;, that do not appear
i any other cluster.

Definition 3.19. V 1 < 4,5,k < m, different indices 1,75, k, let X;;x =
(SiNS;MNSk) \U{S: | r #1i,j,k,1 <r <m}, X, contains the vertices of

the intersection of S;, S; and S, that do not appear in any other cluster.



Definition 3.20. V 1 < 4,7, k, 1 < m, different indices 1, j,k,l, let Xi;x1
= SiNS;NSkNS) \U{S: | r #1,j,k, L1 <r <m}, X,,x; contains the
vertices of the intersection of S;, Sj, Sp and S;, that do not appear in any
other cluster.

Definition 3.21. Let H =< V, S > be a hypergraph, with S = {S;,S;, Sk}
with a triangular intersection graph. H is a satisfied triangle on S;, S;,
iof at least one of the following holds:

3. |Xjul =0.

Definition 3.22. Let H =<V, S > be a hypergraph, with S = {S;,S;, Sk},
with a triangular intersection graph. H is a strongly satisfied triangle
on S;,S;, if at least one of the following holds :

1. |Xi,j,k| == 1

Definition 3.23. Let H =<V, S > be a hypergraph. RL is a removal list
of H if RL is a list of pairs: RL = {(v1,Si), ..., (v, Si,)} with v; € Sy,
such that if we remove for all the pairs in RL, vertex v; from cluster S;,, we
create a new instance of the hypergraph denoted by H\ RL. If H \ RL has
a feasible solution tree we say that RL is a feasible remowval list of H. If
RL is also of minimum cardinality (minimum value of k) we say that RL is
a minimum feasible removal list of H.

Definition 3.24. Let H =< V.8 > be a hypergraph. IL is an insertion
list of H if IL is a list of pairs: 1L = {(v1,Si), ..., (v, Si,,) } with v; & Si,
such that if we insert for all the pairs in IL, verter v; to cluster S;,, we
create a new instance of the hypergraph denoted by H+ IL. If H + IL has
a feasible solution tree we say that IL is a feasible insertion list of H. If
IL is also of minimum cardinality (minimum value of k) we say that IL is
a minimum feasible insertion list of H.

Note that a cluster may appear in the list a few times, each time with a
different vertex.



Definition 3.25. Let H = (V. S) be a hypergraph. If RL = {(v1,S;,), ..., (vk, Si,)}
is a removal list and S' C S is a set of clusters, we define the induced
removal list RL[S’] to be {(v,S;) | (v,S;) € RL,S; € §'}. Denote by
RL[S;]={v | (v,S;) € RL}, the vertices removed from S; by RL.

Definition 3.26. Let H = (V. S) be a hypergraph. If IL = {(v1,S4), .., (v, Si,) }
is an insertion list and 8" C S is a set of clusters, we define the induced
insertion list IL[S’] to be {(v,S;) | (v,S;) € IL,v € V| S; € §'}. Denote by
IL[S;]={v | (v,S;) € IL,v € V'}, the vertices inserted into S; by IL.

Definition 3.27. Let H = <V, S8 > be a hypergraph, with vertex set V and
S ={S1,...,Sn} a set of clusters. Let i,j, k € {1,...,m} be three different
indices. Choose v* € X, and let RLijx = {(v,S;)|v € Xjjx,VF#V'}, a
removal list that removes all vertices from X ;i except for v*. After removing
RL; ;i from H, | X; k| = 1.

Definition 3.28. Let H = < V.8 > be a hypergraph, with vertex set V'
and 8 = {S1,...,Sn} a set of clusters. Leti,j € {1,....,m} be two different
indices. Denote RL;; = {(v,S;)|v € Xi;}, a removal list that removes all
vertices from X; ;. After removing RL; ; from H, |X; ;| = 0.

Definition 3.29. Let H = <V, S > be a hypergraph, with vertex set V and
S ={S1,...,Sn} a set of clusters. Let i,j, k € {1,...,m} be three different
indices. Denote ILG 51 = {(v,Sk)|v € Xy}, an insertion list that inserts
all vertices of X ; to Si. After inserting I L 11, to H, | X =0.

Definition 3.30. Let H = (V,S) be a hypergraph, define mRL(H )= min
{|RL| | RL is a feasible removal list }, the minimum cardinality of all feasible
remouval lists.

Definition 3.31. Let H = (V,S) be a hypergraph, define mIL(H) = min
{|IL] | IL is a feasible insertion list }, the minimum cardinality of all feasible
insertion lists.

Definition 3.32. Let X~ be the list of vertices of X after the removal by a
remouval list.

Definition 3.33. Let XT be the list of vertices of X after the insertion by
an insertion list.
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4 General Properties

In this section we introduce general properties that are used throughout the
work.

Lemma 4.1. Consider a hypergraph H =< V. § >. If T s a feasible solution
tree for CSTP problem and X 1is an intersection set of clusters from S, then
T[X] is a connected path.

Proof. Let X = ﬂ?zl Si;, where S;; € S, and let {v,u} C X. It follows that
{v,u} € S;; Vj € {1,...,k}. Since T is a feasible solution tree for CSTP
problem, T" contains a path between v and u, such that all the vertices in the
path are in S;,. Therefore, T" contains a path between v and u, such that all
the vertices in this path are in X. Hence, T[X] is connected and therefore it
is a connected subtree of T'. Furthermore, since T is a feasible solution tree
for CSTP problem, T'[S;,] is a path which contains T'[X], and therefore T'[.X]
is a connected path. O

Lemma 4.2. ([5] ) Consider a hypergraph H =<V, S > with a connected

intersection graph Gi,(S) and T a feasible solution tree. If Gy (S') is con-
nected for 8" C S, then T[V(S']) is a feasible solution tree of H[S'].

Remark 4.3. (/5] ) Consider a hypergraph H =<V, S > with a connected
intersection graph G, (S) and T a feasible solution tree. If Gi(S') is not
connected, for 8" C S, then according to Theorem 4.2, T induces a feasible
solution tree on every connected component of G (S'), and by adding edges
connecting these trees into a tree, a feasible solution tree of H[S'] is achieved.

Lemma 4.4. ([5] ) Consider a hypergraph H =<V, S >. If RL is a feasible
removal list for H and G (S') is connected, for 8" C S, then RL|S'] is a
feasible removal list for H[S'|.

Lemma 4.5. Let H =< V.§ > be a hypergraph, with vertex set V and
clusters set & = {S1,...,Sn}. If H has a feasible solution tree by paths,
let T be a solution tree. Let X', X", X" be sets of intersections of clusters.
Let P',P" and P" be paths in T which span the intersections X', X", X",
respectively. If there exists S; € (X' NAX")\ X", then in any feasible solution
P" can not appear between P’ and P”.

Proof. Suppose by contradiction that H has a feasible solution tree by paths,
and P" is connected between P’ and P”. In this case, P[S;] is not connected,
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in contradiction with the assumption that H has a feasible solution tree by
paths.
O

Lemma 4.6. Let H =< V. § > be a hypergraph, with vertex set V and
clusters set S = {S1,...,Sn}. Let T be a feasible solution tree of H. Let
X' X" X" be sets of intersections of clusters. Let P', P" and P" be paths
which span the intersections of X', X", X", respectively. If there is S; € (X'N
X" NAX"), then in any feasible solution there is no vertexv € PPN P" N P".

Proof. Suppose by contradiction, that H has a feasible solution tree by paths
and there is a vertex v € P’N P”" N P". In this case, P’, P” and P" all span
S;. Therefore, all tree paths create a tree merging from vertex v, so that 7S]
is spanned by a tree and not a path, in contradiction with the assumption
that H has a feasible solution tree by paths, see Figure 1. O]

Pu v PJ

PJJJ

Figure 1: A drawing for Lemma 4.6

Lemma 4.7. Let H =< V.§ > be a hypergraph, with vertex set V and
clusters set S = {S1,...,Sm}. Let X', X" X" be sets of intersections of
clusters If H has a feasible solution tree by paths, let P', P" and P" be
paths which span the intersections of X', X", X", respectively. If there ewist
Si € (XN X" and S; € (X' NX")\ X" then in any feasible solution
P’ has to appear between P" and P".

12



Proof. According to Lemma 4.2, P” can not be connected between P’ and
P”. Furthermore, P” can not be connected between P’ and P"”’. Therefore,
the only way to connect the paths is to connect P’ between P” and P".
In this case, P[S;] is spanned by the concatenation of P” and P’. P[S;] is
spanned by the concatenation of P" and P". ]

Theorem 4.8. ([7] ) Let H =< V,8 > be hypergraph whose intersec-
tion graph G (H) is a chordless cycle of size m > 4, denoted as C, then
IML(C)| =m — 2.

5 Triangular Intersection Graphs

In this section we consider a triangular intersection graph, see Figure 2. We
describe the conditions for a CSTP solution and suggest a minimum feasible
removal list and a minimum feasible insertion list. We assume H satisfies
the Helly property, otherwise according to Theorem 2.1, H does not have a
feasible solution tree by paths. Thus, by Helly property |X; 23] > 1.

S:

Ss Sz

Figure 2: Triangular Intersection Graphs

Theorem 5.1. Let H =< V,§ > be a hypergraph, with S = {S1, S, S3} and
a triangular intersection graph. If | Xy 23| = 1, then H has a feasible solution
tree by paths.

Proof. Let P; be a path spanning X;, for 1 < ¢ < 3. Let P, ; be a path
spanning X, ;, for i # j and let v be the only vertex in Xj,3. Figure 3

presents a feasible solution by paths for H.
[
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Figure 3: Theorem 5.1 solution tree

Theorem 5.2. Let H =< V,§ > be a hypergraph, with S = {S1,Ss, S5}
and a triangular intersection graph. If |X123] > 1, and at least one of the
sub clusters X1, Xi13, Xo3 is empty, then H has a feasible solution tree by
paths.

Proof. 1If | X; 23] = 1, according to Theorem 5.1, H has a feasible solution tree
by paths. Else, without loss of generality, suppose that | X 2| = 0. Figure 4
presents a feasible solution by paths for H. ]

Theorem 5.3. Let H =< V,§ > be a hypergraph, with S = {Si,Ss, 55}
and a triangular intersection graph. If | X123 >1, and all of the sub clusters
X12, X13, Xog are not empty, then H has no feasible solution tree by paths.

Proof. Suppose by contradiction, that H has a feasible solution tree by paths,
denote this tree by T'. Since | X 23| > 1, according to Lemma 4.1, there is a
path P23 with at least one edge which spans Xj 23. According to Lemma
4.1, there is a path Py (P35, Pi3) with at least one vertex which spans

14
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Figure 4: Theorem 5.2 solution tree

X2 (Xa3, X13) respectively. Since T is a feasible solution tree, T'[5] is
a connected path and therefore it contains P, 9, P 3 and P 23 as sub paths.
According to Lemma 4.5, P, 5 3 has to appear between P, 3 and P, 3. Further-
more, since T is a feasible solution, T'[S,| is a connected path with P o, Ps3
and P23 as its sub paths. Thus, according to Lemma 4.5, P53 has to
appear between P 5 and P; 3.

Hence P 23 has to be connected to Py 5, Py 3 and P, 3, such that two of
them have to be connected at the same endpoint of P 53. Without loss of
generality, suppose that P, and P 3 are on the same endpoint. However,
in this case T'[S;] is spanned by a tree and not a path as shown in Figure 5,
contradicting the assumption that 7" is a feasible solution tree by paths.

m

Corollary 5.4. According to Theorems 5.1,5.2, 5.3, a triangular intersection
graph has a feasible solution tree by paths if and only if | X1 23] =1 or | X123
>1 and at least one of the sub clusters X o, X1 3, Xo3 15 empty.
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Figure 5: T'[S]

Now we consider removal lists for triangular intersection graphs. Note
that, if H has a feasible solution tree, every removal list may be empty.

Theorem 5.5. Let H = < V.S > be a hypergraph, with S = {S1,Ss, S5}
and a triangular intersection graph. Choose v* € Xi93. RL123 15 a feasible
removal list of H with cardinality | X, 23| — 1.

Proof. Consider H \ RLy 3. According to Definition 3.27, | X7, 3| =1. Ac-
cording to Theorem 5.1, H \ RL; 2 3 has a feasible solution tree by paths. [J

Theorem 5.6. Let H =< V,§ > be a hypergraph, with S = {S1,Ss, S5}
and a triangular intersection graph. RLys is a feasible removal list with
cardinality | X1 o|.

Proof. Consider H \ RL; 5. According to Definition 3.28, the cardinality of
| X1 5| = 0. Since we assume | X1 3| > 1, according to Theorem 5.2, H\ RL; 5
has a feasible solution tree by paths. O]

Observation 5.7. Similarly, RL, 3 and RLs 3 are feasible removal lists with
cardinality | X1 3| and | X 3|, respectively.

Theorem 5.8. Let H =<V, S > be a hypergraph, with S = {S1, S, S3} and
a triangular intersection graph.

RL = argmin(|RL1 23|, |RL12|,|RL1 3|, |RLa3|) is a minimum feasible re-
mowal list of H.

Proof. According to Theorems 5.5 and 5.6 and Observation 5.7, all the lists
in RL are feasible removal lists, therefore RL is a feasible removal list.

16



Assume H has a feasible solution tree by paths. Then according to Corol-
lary 5.4, one of the lists RLy 23, RL1 2, RLy 3 or RLy 3 is empty, thus by defini-
tion RL will also be empty. Therefore, RL is a minimum feasible removal list
of H. Otherwise, H does not have a feasible solution tree by paths. Accord-
ing to Corollary 5.4, in order to gain feasibility, either | X 23| =1 or | X 23]
>1 and at least one of the sub clusters X », X3, Xo3 is empty. RL 23 rep-
resents the first option, RL; 9, RLy 3 and RLs 3 represent the second option.
RL53, RLy 2, RL; 3 and RLs 3 represent all possible removal lists of H. RL
is the list with minimum cardinality, therefore RL is a minimum feasible
removal list of H. O]

Now we consider insertion lists for triangular intersection graphs. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 5.9. Let H =<V, S > be a hypergraph, with S = {S1, S, S5} and
a triangular intersection graph. 1L 243 is a feasible insertion list of H with
cardinality | X o|.

Proof. Consider H + IL; 2)43. According to Definition 3.29, the cardinality
of |X{,| = 0. According to Theorem 5.2, H has a feasible solution tree by
paths. O

Observation 5.10. Similarly, 1L 3)+2 and I L3y are feasible insertion
lists with cardinality | X, 3| and |Xs 3|, respectively.

Theorem 5.11. Let H =< V8 > be a hypergraph, with S = {S1,Ss, S5}
and a triangular intersection graph.

IL = argmin(|1La 213, [ILas)+2|, [IL23)+1|) is a minimum feasible inser-
tion list of H.

Proof. According to Theorem 5.9 and Observation 5.10, all the lists in IL
are feasible insertion lists, therefore I'L is a feasible insertion list. Since H
has no feasible solution tree by paths, according to Corollary 5.4, | X7 23]
>1 and all of the sub clusters X9, X3, X535 are not empty. To gain fea-
sibility using insertion, can only be achieved by inserting vertices to X o3
and emptying at least one of the sub clusters X; o, Xj3 or Xy3. Accord-
ing to Theorem 5.9 and Observation 5.10, 1L 943, 1L 3)+2 and 1L 3)41
represent these insertions and are feasible insertion lists. Therefore IL =
argmin(|1La 2y43|, |1 La g)+2|, [ L(2,3)41]) is a minimum feasible insertion list
of H. O]
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5.1 Satisfied Triangles

In this section we consider a satisfied triangle and a strongly satisfied triangle
intersection graph. We describe the conditions for a feasible CSTP solution
and suggest a minimum feasible removal list and a minimum feasible insertion
list.

Lemma 5.12. Let H =< V|8 > be a hypergraph, such that H|[S;, S, Ss]
is a strongly satisfied triangle on Sy, Ss, then H[Si,Ss, Ss] has two possible
structures for a feasible solution tree by paths.

Proof. Let P; be a path spanning X;, for 1 < ¢ < 3. Let F;; be a path
spanning X; ;, for ¢ # j . If | Xi23| = 1, let v be the only vertex in Xj 3.
Then according to Theorem 5.1, Figure 6.1 presents a feasible solution by
paths for H.
If | X13] = 0. Let Py 23 be a path spanning X 5 3. Then according to Theorem
5.2, Figure 6.2 presents a feasible solution by paths for H.

O

Vizgs
P23 P12 Pi> | Pi23 | P23

P1.3

Figure 6: Theorem 5.12 solution trees

Remark 5.13. Some of the paths in Figure 6, may be empty.

Lemma 5.14. Let H =<V, S > be a hypergraph, such that H[Sy, Sa,Ss3] is
a satisfied triangle on Sy, So, then H[S1, S, S3] has three possible structures
for a feasible solution tree by paths.
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Proof. Let P; be a path spanning X;, for 1 < ¢ < 3. Let P, ; be a path
spanning X ;, for i # j .
If | X1 23] =1, let v be the only vertex in X 23. Then according to Theorem
5.1, Figure 7.1 presents a feasible solution by paths for H.
If | X5 3] =0, let P23 be a path spanning X 5 3. Then according to Theorem
5.2, Figure 7.2 presents a feasible solution by paths for H.
If | X, 3] =0, let P23 be a path spanning X; 2 5. Then according to Theorem
5.2, Figure 7.3 presents a feasible solution by paths for H.

O

Vizs
P2z P:2 Piz Pi23 Pzs P12 i Pizs ‘ Piz

P1,3

Figure 7: Theorem 5.14 solution trees

Remark 5.15. Some of the paths in Figure 7, may be empty.

Now we consider removal lists to gain a satisfied triangular and strongly
satisfied triangular intersection graphs.

Theorem 5.16. Let H =< VS > be a hypergraph, with S = {S1,Ss, S5}
and a triangle intersection graph.

Let RLsatisfied = CLTng'n(|RL17273|7 |RL173|, |RL273|).

RLgatisfieqa 15 a minimum feasible removal list of H, such that H \ RLsatisficd
1s a satisfied triangle on Si,Ss.

Proof. H|[S1, 52,53 is a satisfied triangle on Si,Ss, if at least one of the
following conditions is satisfied: |Xj23] = 1, |Xi3] = 0 or [X3| = 0.
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RL23, RL; 3 and RLy 3 represent removal lists to gain each option, respec-
tively. O]

Theorem 5.17. Let H =< V8 > be a hypergraph, with S = {S1,Ss, S35}
and a triangle intersection graph.

Let RLgtrongly = argmin(|RLy o], |RL123|)-

RLgtrongly 15 a minimum feasible removal list of H, such that H \ RLsiyongiy
is a strongly satisfied triangle on Sy, Ss.

Proof. H|[S1,S2,S3] is a strongly satisfied triangle on Sy, Ss, if at least one
of the following conditions is satisfied: |X; 23| =1 or | X 2| =0, RL; 23 and
RL; 5 represent removal lists to gain each option, respectively. O

Now we consider insertion lists to gain a satisfied triangular and strongly
satisfied triangular intersection graphs.

Theorem 5.18. Let H =< V,;§ > be a hypergraph, with S = {S1,Ss, S5}
and a triangle intersection graph that is not a satisfied triangle on S, Ss.
Let [Lsatisfied = argmin(|IL(L3)+2|, |IL(2,3)+1|)-

I'Lgatisfiea 15 a minimum feasible insertion list of H, such that H 4 I Lsqtisfica
1S a satisfied triangle on Sy, Ss.

Proof. H|[Sy, 52,53 is a satisfied triangle on Sy, Sy, if at least one of the
following conditions are satisfied: |Xj23] = 1, |X13] = 0 or |Xo3] = 0. To
gain a satisfied triangle on S7,.S; using insertions, can only be achieved by
inserting vertices to X 23 and emptying at least one of the clusters X 3
or Xo3. 1L 3)+2 and L3341 represent insertion lists, respectively. Thus,
I'Lgatisfiea 1s @ minimum feasible insertion list of H, such that H + I Lgatis ficd
is a satisfied triangle on 57, S5. O

Theorem 5.19. Let H =< V,§ > be a hypergraph, with S = {S1,Ss, S5}
and a triangle intersection graph and is not a strongly satisfied triangle on
S1, 8. Let I Lgrongly = IL1.2)+3- 1 Lstrongly %5 a minimum feasible insertion
list of H, such that H + I Lyyongry @5 a strongly satisfied triangle on Sy, Ss.

Proof. To gain a strongly satisfied triangle on Si, Ss, one of the following has
to hold: |X;23/ = 1 or |X;5| = 0. To gain a strongly satisfied triangle on
S1, Sz using insertions, can only be achieved by inserting vertices to X; 5 3 and
emptying Xi. [L(12)43 represents the corresponding insertion list. Thus,
I'Lgyongly is a minimum feasible insertion list of H, such that H + I Lgyongly
is a strongly satisfied triangle on Sy, .S5. O
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6 Diamond Intersection Graphs

In this section we consider a diamond intersection graph, see Figure 8. We
describe the conditions for a feasible C'STP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.

We assume H satisfies the Helly property, otherwise according to Theorem
2.1, H does not have a feasible solution tree by paths, therefore | X235 > 1
and | X7 04] > 1.

Note that if H has a feasible solution tree, RL will be an empty list.

S

Ss Ss

S2

Figure 8: Diamond Intersection Graph

Theorem 6.1. Let H =< V,S > be a hypergraph, with S = {Si, S, S3, 5S4}
and a diamond intersection graph on Sy, Ss. If | X123 = |X124] = 1, then
H has a feasible solution tree by paths.

Proof. Let P; be a path spanning X;, for 1 < ¢ < 4. Let F;; be a path
spanning X, ;, for ¢ # j. Let vy 23 be the only vertex in X 3. Let v124 be
the only vertex in X 4. Figure 9 presents a feasible solution by paths for
H.

m

Theorem 6.2. Let H =<V,S > be a hypergraph, with S = {51, S2,S3, 54}
and a diamond intersection graph on Sy, S, with | X123 > 1 and | X1 24| >
1.

If | Xo3| = |Xo4| = 0, then H has a feasible solution tree by paths.

Proof. Let P; be a path spanning X;, for 1 < ¢ < 4. Let P, ; be a path
spanning X ;, for ¢ # j. Let P, ;, be a path spanning X; ;,, for i # j # r.
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Ps Pis Vizs P12 Vizs Pia P:

P2 Pa

Figure 9: Theorem 6.1 solution tree

Figure 10 presents a feasible solution by paths for H.

Figure 10: Theorem 6.2 solution tree

Observation 6.3. Similarly, Theorem 6.2 holds for conditions | X1 3| = | X1 4|
= 0.

Theorem 6.4. Let H =<V, S > be a hypergraph, with S = {Si,Sa,S3, 5S4}
and a diamond intersection graph on Si,Ss, with | X123 > 1 and | X1 24| >
1. If | Xo3| = |X14] = 0, then H has a feasible solution tree by paths.

Proof. Let P; be a path spanning X;, for 1 < ¢ < 4. Let F;; be a path
spanning X ;, for ¢ # j. Let P, ;, be a path spanning X; ,,, for i # j # r.
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Figure 11 presents a feasible solution by paths for H.

Figure 11: Theorem 6.4 solution tree

Observation 6.5. Similarly, Theorem 6.4 holds for conditions | X1 3| = |X2.4|
= 0.

Remark 6.6. Let H =<V, S > be a hypergraph, with S = {S;,5;, Sy, Sk}
and a diamond intersection graph on S;,S;. Theorem 6.2 is with respect to
intersections that share an index X;, , X;, or X, , X, . Theorem 6.4 is
with respect to intersections which use pairwise disjoint set of indices X;, ,

X]’,k or Xj,r 5 Xi,k-

Theorem 6.7. Let H =<V,S > be a hypergraph, with S = {S1,Ss,S3, 5S4}
and a diamond intersection graph on Si,Ss, with | X1 23| = 1 and | X1 24| >
1. If | X14] = 0 or | Xa4| =0, then H has a feasible solution tree by paths.

Proof. Without loss of generality, suppose that |X; 4| = 0. Let P, be a path
spanning X;, for 1 <¢ < 4. Let P, ; be a path spanning X ;, for 7 # j. Let
P, ;» be a path spanning X; ;,, for i # j # r. Figure 12 presents a feasible
solution by paths for H.

O

Observation 6.8. Similarly, Theorem 6.7 holds for conditions | X1 23| > 1,
|X1,274| = 1 (Z’fld Zf |X173| = 0 or |X273| = 0
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P:1 P13 P12 P24 P24 P2

P.

P2

Figure 12: Theorem 6.7 solution tree

Theorem 6.9. Let H =<V,S > be a hypergraph, with S = {Si,Sa,S3, 54}
and a diamond intersection graph on Si, S, with | X123 > 1 and | X1 24| >
1 If | X14] > 0 and | Xa4| > 0, or | X13| > 0 and | Xa3| > 0, then H has no
feasible solution tree by paths.

Proof. Suppose by contradiction, that H has a feasible solution tree by paths,
denote this tree as T'. Without loss of generality, suppose that | X 4| > 0 and
| X2.4] > 0. Since | X; 24| > 1, according to Lemma 4.1, there is a path Py 54
with at least one edge which spans Xj 4. Since |Xj 23| > 1, there is a path
Py 55 with at least one vertex which spans X 55. According to Lemma 4.1,
there is a path Py 4 (P24) with at least one vertex which spans X4 (Xa24).
Since T is a feasible solution tree, T'[S3] is a connected path which contains
P4, P23 and P o4 as its sub paths. Since T' is a feasible solution tree,
T[S;] and T'[S,] are connected, and according to Lemma 4.7, P; 54 has to be
between P o3 and P 4. Since T is a feasible solution tree, T'[Sy4] is connected
and contains P 4, P24 and P4 as its sub paths, such that P24 is in the
middle.

Next we consider how the four sub paths P54, P24, P123 and P4 are ar-
ranged in 7. As proven above, P; o4 is connected between P53 and P, 4.
Py 4 has to be connected to one of the endpoints of P24 to insure that
P[S,], P[S;] and P[S,] are connected. Suppose P 4 is connected to the same
endpoint as P 23. In this case, P[S;] is spanned by a tree, see Figure 13.
Suppose P, 4 is connected to the other endpoint of P; 54 than P 3. In this
case, P[S,] is spanned by a tree. Both cases contradict that T is a feasible
solution tree by paths.
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P2.4— Pl.2‘4 I P1.2.3

P1.4

Figure 13: P[S;] spanned by a tree

]

Observation 6.10. Similarly, Theorem 6.9 holds for conditions | X 23] > 1,
|X17274| > 1 and Z.f|X173| >0 and |X273| >0 or |X274| > 0 and |X174| > 0.

Corollary 6.11. Let H =<V, S > be a hypergraph, with S ={S1,Ss,Ss, S4}
and a diamond intersection graph on S1,S5:. H has a feasible solution tree
by paths if and only if H[Sy, S2,Ss] and H[S1,S2,Ss) are satisfied triangles
on S, Ss.

Proof. Theorems 6.1, 6.2, 6.4 and 6.7 represent all possible ways of H[S1, Sa, S3]
and H[S, Sz, S,4) being satisfied triangles on Sy, Sy and show a feasible so-
lution tree by paths for H. Therefore, if H[S], Ss, S3] and H[S;, S2,S,] are
satisfied triangles on S;,S5;, H has a feasible solution tree by paths. On
the other end, Theorem 6.9 and Observation 6.10, show that if H[S;, Ss, S3]
or H[S1,Ss,S,] are not satisfied triangles on Si,Ss, then H has no feasible
solution tree by paths. O

Now we consider removal lists for diamond intersection graphs. Note
that, if H has a feasible solution tree, every removal list may be empty.

Lemma 6.12. Let H =<V, S > be a hypergraph, with & = {S1,Ss,S3, 54}
and a diamond intersection graph on Sy, Sy. The removal of edge (s1, S9) will
not achieve a minimum remowval list.

Proof. The removal of edge (s1,s2) can be achieved by removing all of the
vertices of S; NSy from one of the clusters Sy or Ss. According to Corollary
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6.11, in order to gain a feasible solution tree by paths of H, H[S;, S, S3] and
H|[S1, Ss, S,] have to be satisfied triangles on S, Ss. According to Theorem
5.16, removing edge (s1, $2) does not achieve a satisfied triangle on Sy, .S,
therefore this removal will not achieve minimum removal list. O

Theorem 6.13. Let H =<V, S > be a hypergraph, with S = {51, S2,Ss, S4}
and a diamond intersection graph on Sy, Sy. Let RLY?3 be a minimum fea-
sible removal list for triangle H[Sy, Ss,S3], so that H[Sy, Sa, S3] \ RLY*3 is
a satisfied triangle on Si,Sy. Let RLY?* be a minimum feasible removal list
for triangle H[S}, S, S4], so that H[Sy,Ss,S4] \ RLY** is a satisfied triangle
on S1,Sy. RL = RLY23|JRLY>* is a minimum feasible removal list of H.

Proof. By Corollary 6.11, in order to gain a feasible solution tree by paths
of H, H[S;, S, 53] and H[Sy, Sz, S,] have to be satisfied triangles on Sy, Ss.
HI[S1, Sy, S3]\ RLY*3 is a satisfied triangle on S}, So and H|Sy, S, Sq]\ RLY%4
is a satisfied triangle on Sp, Ss. Another way to achieve feasibility is to remove
edge (s1, $2), by removing all of the vertices of S1MNSs from one of the clusters
S or Ss5. According to Lemma 6.12; this option can never create a minimum
removal list.
Therefore, RL = RL“?3|J RLY** is a minimum feasible removal list of H.
O

Now we consider insertion lists for diamond intersection graphs. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 6.14. Let H =<V, S > be a hypergraph, with S = {Si, S2,S3, S4}
and a diamond intersection graph on Sy, Ss. Let ILY%3 be a minimum feasible
insertion list for triangle H[Sy, S, Ss], such that H[Sy, Ss, S| + [LY*3 is a
satisfied triangle on Sy, Sy. Let ILY** be a minimum feasible insertion list for
triangle H[S1, Sa, S4), such that H|[Sy, Sa, S| + ILY** is a satisfied triangle
on Sy, Sy. IL = ILY*3|JILY** is a minimum feasible insertion list of H.

Proof. Proof the same as for Theorem 6.13. m

Lemma 6.15. Let H =<V, S8 > be a hypergraph, with S = {Si,Sa,S3, 54}
and a diamond intersection graph on Si,Sa, with a feasible solution tree by
paths of H. Let P1o , Piog and Py o4 be the paths spanning X2, X123 and
X124, respectively. If P o is not connected between Py o5 and P 2.4, then P o

can be moved to be connected between P o3 and P 94, without changing the
feasibility of H.
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Proof. H has a feasible solution tree, therefore every cluster in § is spanned
by a connected path. Moving P » to be connected between P 53 and P 24,
does not affect the clusters being spanned by a connected path, since P o
remains in paths P[S;] and P[S,]. O

7 Butterfly Intersection Graphs

In this section we consider a butterfly intersection graph, see Figure 14. We
describe the conditions for a feasible CSTP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.

Si
Sk Ss

Sk1 e " Sz Se

Figure 14: Butterfly Intersection Graph

Theorem 7.1. Let H =< V| S > be a hypergraph, with S = {S1, 52, 53, S4, S5}
and a butterfly intersection graph on Sy, Sy with 3 wings. If H[S1, Ss, S5, S4
has a feasible solution and | X1 5| = |Xo5| = 0, then H has a feasible solution.

Proof. According to the theorem’s assumption, H|[Si, Sa, S3, Sy] has a feasible
solution tree by paths, denote this tree as T'. Since Si, Ss, S5 create a wing
in the intersection graph, S1 (S5 # 0 and S5 (S5 # 0. In addition, since H
satisfies the Helly property, X125 # 0, X124 # 0 and Xy 23 # 0.

Let P24 (P 23) be the path in 7" spanning the vertices in Xj 24 (X1,23). Let
Py 55 be a path spanning X o 5.

Let P, be the path in 7" spanning the vertices in X; 5. If P 5 is not connected
between P; 93 and P 24 in T', according to Lemma 6.15, we can change the
order of the vertices in P[S;] such that P 5 is connected between P 53 and
Py 54 and T remains a feasible solution tree.
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Add P, 55 between P, 5 and P; 5 4. Thus, in P[S;] the sub paths are arranged
in the following order: P23, P12, P25 and Py 2 4.
Let Ps be a path spanning X;. Recall that |X;5 = 0 and |X;5] = 0,
thus connect one of Ps; endpoints to the vertex where P55 and P24 are
connected.
Sy is spanned by T[S;] and Pja5. Sy is spanned by T'[S;] and Pjoj5. Ss
is spanned by T[Ss]. Sy is spanned by T'[S4]. Ss is spanned by P55 and
Ps5. Figure 15 presents a feasible solution by paths for H, for the two case
PLg;é@and PLQIQ).

]

Ps
| | P1.2‘3 | P1‘2.5 P1‘2,4 | i

Figure 15: Theorem 7.1 solution tree

Theorem 7.2. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }
and a butterfly intersection graph on Sy, Sy with k wings. If H[S1, Sa, S5, S4
has a feasible solution and for everyi € {5,....,k} | X1, = | X2, = 0, then H
has a feasible solution.

Proof. Since Gy,i(H) is a butterfly connected intersection graph on Si, Ss,
H|[Si, Sy, S5, 54] has a diamond intersection graph on Sj, S;. According to
the theorem’s assumption, H[S], Ss, S5, S4] has a feasible solution tree by
paths, denote this tree as T.

Let P94 (P 23) be the path in 7" spanning the vertices in Xj 24 (X1,23). Let
P, 5 be the path in T" spanning the vertices in X 5.
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Since Si, 53, 5; where ¢ € {5,...,k} create a wing in the intersection graph,
S1NS; # 0 and Sy S; # 0. In addition, since H satisfies the Helly property
X142 # (0. Let Py, be the path spanning X 5, for i € {5,..., k}.
Concatenate the sub paths P o5, P 2g, ..., P12y in this order. Let P’ be the
created path. If P 5 is not connected between P 53 and P 24 in T, according
to Lemma 6.15, we can change the order of the vertices in P[S;] such that
P, 5 is connected between P 23 and P 24 and 71" remains a feasible solution
tree.
Connect P’ between P; 5 and P 5 4.
Let P;, where i € {5,....,k — 1}, be a path spanning X;, and connect P; to
the vertex connecting P2, and P 9 41.
Let Py be a path spanning X}, and connect P, to the vertex connecting P o
and Pj24. 51 is spanned by T'[S;] and P’ . Sy is spanned by T'[Ss] and P’ .
Sy is spanned by T'[S3]. Sy is spanned by T'[S4]. S; is spanned by P 2, and
P;. Figure 16 presents a feasible solution by paths for H.

O

S5
Ps Ps Pk
; Pi23 i P12 ‘P1.25 |F1,2‘5 i | P P12s
t T f fr® e |

i

Figure 16: Theorem 7.2 solution tree

Observation 7.3. Similar to Theorem 7.2, if H[S1,Ss,S5:,5;] for i,j €
{3,...,m}, i # j has a feasible solution and for every k € {3,...,m} \ {7,5}
| X1k = |Xak| = 0, then H has a feasible solution tree.

Theorem 7.4. Let H =<V, S > be a hypergraph, with a butterfly intersec-
tion graph on Sy, Ss. If there are 3 different indices iy, 12,13 such that |X1ﬂ~j|
> 0 or | Xa;,| > 0 for j € {1,2,3}, then H has no feasible solution tree by
paths.
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Proof. Suppose by contradiction that H has a feasible solution tree, denoted
by T'. Without loss of generality, let {iy, 2,13} = {3,4,5}, and that |X; 5| >
0, | X14] >0, | X5 > 0.

Since 51, 52,5, create a wing in the intersection graph, S ()S; # () and
Sy Si; # 0, for 1 < j < 3. Since H satisfies the Helly property, Xy, # 0.
According to Lemma 4.1, every intersection is spanned by a connected path.
Let P 3, P14 and P 5 be the paths spanning X3, X;4 and X5 in T, re-
spectively. Let P23, Py 24 and P 5 be the paths spanning X 53, X 24 and
Xi25 in T, respectively. T[] is a connected path with Py 3, Py 4, P15, Pi 23,
P55 and Py o5 as its sub paths. According to Lemma 4.7, P, 3 is between
Py 3 and Pyo4, and P54 is between P; 4 and P 23. So the order of the sub
paths in P[S1] is P13, Pias, Piaa, Pr4. According to Lemma 4.5, P 55 can
not to be connected between P 3 and P, 53 or between P, 5 4 and P 4. Hence
the order of the sub paths in P[S;]is P13, P123, Pi2s, Pi24, Pia.

Next, we consider where the sub path P, 5 is inside P[S;]. P, 5 has to touch
P, 55 to insure that P[Ss] is connected. However, according to Lemma 4.5,
Py 5 can not be connected between P23 and P25 or between P55 and
Py 5 4. Contradicting the assumption that H has a feasible solution tree by
paths. O

Now we consider removal lists for butterfly intersection graphs. Note
that, if H has a feasible solution tree, every removal list may be empty.

Theorem 7.5. Let H =<V, S > be a hypergraph with S ={S1,Ss,S3, ..., S}
and a butterfly intersection graph on Sy, Ss. Let RL", 1,5 € {3,...,m} be a
minimum cardinality feasible removal list of H[S1, S2, S, Sj].

Let BRL = RL*" | J(RLyx\JRLay), k € {3,....,m}\{4,j}. BRL is a feasible

removal list for H.

Proof. Since RL™ is a feasible removal list, H[S1,Ss,S5;,5;] \ RL™ has a
feasible solution tree. H[Si, 52,5, 5;] \ BRL has a feasible solution tree. In
addition, in H \ BRL, for every k € {3,....m} \ {4,j}, | X | = [X;,| =0
and therefore, according to Theorem 7.2, H has a feasible solution tree by
paths. O]
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Algorithm 1: ButterflyMinRemovalList
Input : Butterfly intersection graph
Output: Minimum removal list for butterfly intersection graph
BRL =[]
for i, €{3,....,m},i# jdo

Find RL* a minimum cardinality feasible removal list for
H[Sl, SQ, SZ‘, Sj];

tempList = | |;

for k such that k € {3,...,m} and k # i,j do
| tempList = tempList (J RL1y, J RLa;

end

BRL" = RL" JtempList;

Let *, 7* = argmin(BRL");

end

return BRL" "

Theorem 7.6. Let H =<V, S > be a hypergraph with S ={S1,Ss,S3, ..., Sm}
and a butterfly intersection graph on Sy,Ss. Algorithm ButterflyMinRe-
movalList returns a minimum cardinality feasible removal list for H.

Proof. Let L be a minimum feasible removal list. According to Theorem 7.4,
in H \ L there are at most two indices ', j" such that ([X ;[ > 0 or | X, |
> 0) and (|X; ;| > 0 or [X; ;| > 0). Furthermore, in H \ L, for every k €
{3, omp\{7, j'}, [ X, = 0 and | X, [ = 0. According to Theorem 7.5, H'\
L[S}, Sa, Sir, Sj/] has a feasible solution, therefore L = RL"' | J RLy | J RLo
ke {3,..m}\ {i,j'}, giving that L = BRL""".

Let BRL"" be the result of the algorithm ButterflyMinRemovalList. Since
algorithm ButterflyMinRemovalList consider all possible pairs of indices, it
will also consider i, j/, and therefore |BRL""| < |BRL"7'| = |L|, giving
that BRL" " is also a minimum feasible removal list. O

Now we consider insertion lists for the butterfly intersection graph. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 7.7. Let H =<V, S > be a hypergraph with S = {S1, S, S3, ..., Sm}
and a butterfly intersection graph on Sy, Ss. Let IL%, 4,5 € {3,....,m} be a
minimum cardinality feasible insertion list of H[S1, S, S;, S;].

Let BIL = IL9 \J(ILa o UTLoss) k € {3,...m}\ {i,j}. BIL is a
feasible insertion list for H.
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Proof. Since IL"“ is a feasible insertion list, H[S1,Ss,S;,S;] + IL* has a
feasible solution tree. H[Si, Sy, S;, S| + BIL has a feasible solution tree. In
addition, in H + BIL, for every k € {3,....m} \ {i,5}, |X{,| = |X3,| =0
and therefore, according to Theorem 7.2, H has a feasible solution tree by
paths. O

Algorithm 2: ButterflyMinInsertionList
Input : Butterfly intersection graph
Output: Minimum insertion list for butterfly intersection graph
BIL=|];
for i, €{3,....,m},i#jdo

Find /L% a minimum cardinality feasible insertion list for
H[Sl, SQ, Si, Sj];

tempList = [ |;

for k such that k € {3,...,m} and k # i,j do
| tempList = tempList (JILq p41 U L2415

end

BIL% = [L% JtempList;

Let %, 7* =argmin(BILY);

end

return BILV7"

Theorem 7.8. Let H =<V, S > be a hypergraph with S = {S1, S, S3, ..., Sm}
and a butterfly intersection graph on Sy, Ss. Algorithm ButterflyMinInser-
tionList returns a minimum cardinality feasible insertion list for H.

Proof. Let L be a minimum feasible insertion list. According to Theorem
7.4, in H + L there are at most two indices ¢, j" such that (|X;,| > 0 or
| X5 > 0) and (|X;7,| > 0 or [X;,| > 0). Furthermore, in H + L for
every k € {3,..,m} \ {#,j'}, |X{,] = 0 and [Xj;] = 0. According to
Theorem 7.7, H + L[Sy, 52, Sy, S| has a feasible solution, therefore L =
IL" JILa g UILag k€ {3,...,mI\ {7, j'}, giving that L = BIL"".
Let BIL"7" be the result of the algorithm ButterflyMinInsertionList. Since
algorithm ButterflyMinInsertionList consider all possible pairs of indices, it
will also consider ¢, 5, and therefore |BIL¥""| < |BIL"+'| = |L|, giving that
BIL"7" is also a minimum feasible insertion list. O
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8 Windmill Intersection Graphs

In this section we consider a windmill intersection graph, see Figure 17. We
describe the conditions for a feasible C'STP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.

Sk S5t 52
Sk Ss

e S
<

Figure 17: Windmill Intersection Graph

Theorem 8.1. Let H =<V, S > be a hypergraph, with S = {51, S2,S3, ..., Sm }
and a windmill intersection graph on Sy. G (H) has mT_l triangular induced
sub graphs.

Proof. H has m clusters, cluster S; that corresponds to node s; in Gy, (H), is
the cluster connected to all the triangles in G;,;(H) such that every triangle
has 2 more nodes. Therefore, the total number of triangles is mT’l

]

Observation 8.2. According to Definition 3.8, sy is a cut node in Gy (S)

that disconnects G (S) into mT_l connected components whose corresponding

cluster sets are {Sa,S3},{S4, S5}, -y {Sm—1, Sm }

Observation 8.3. Furthermore, since si is a cut node, the corresponding
vertices sets Sa|J S3,S4\U S5, .oy Sm_1 U Sm are pairwise vertex disjoint.

Theorem 8.4. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }
and a windmall intersection graph on Si. If every triangle in the windmill
has a feasible solution tree by paths, then H has a feasible solution.
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Proof. In [5], they prove that if the connected intersection graph Gy, (S)
contains a cut node s*, which disconnects the intersection graphs to clusters
sets {Sq,...,s¢} and if every H; = H[S; U {S*}], j € {a,...,¢{}, has a
feasible solution for CSTP problem, then H has a feasible solution for CSTP
problem. According to Observation 8.2, and the theorem assumption, every
triangle in the windmill has a feasible solution tree by paths. Therefore, H
has a feasible solution tree by paths, see Figure 18. O

Vis7
| P17 Pis | Pias | Pia ; Pis | Pi2s P12 |
\ I ; ‘

Pas
Psz

I | |
Figure 18: Theorem 8.4 solution tree

Now we consider removal lists for windmill intersection graph. Note that,
if H has a feasible solution tree, every removal list may be empty.

Theorem 8.5. Let H =<V, S > be a hypergraph, with S = {51, S2,S3, ..., Sm }
1

and a windmill intersection graph on S;. mRL(H) = Z:;T_l mRL(H[S1, S2i, S2i+1])s
iedl,., 21}

Proof. According to Observation 8.2, s; is a cut node which divides the

intersection graph into mT’l connected components whose clusters sets are

{Sl, SQZ‘, 52i+11}, fori € {1, ey mT—l} According to [5], mRL(H) = Z::T; mRL(H[Sl, SQZ‘, SQZ'_H]),
ie{1,., m=1y 0

Theorem 8.6. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }
and a windmill intersection graph on Si. Let RL; be a minimum feasible

m—1
removal list for H[S1, Sa;, Saiv1], © € {1, .., mT_l} RL =J;.4 RL; is a min-
imum feasible removal list of H.
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Proof. According to Theorem 8.4, if every triangle in the windmill has a
feasible solution tree by paths, then H has a feasible solution. Since RL; is a
feasible removal list for H|[S, Sa;, Sai41], H[S1, Sgl, Sait1] \ RL; has a feasible

solution tree. According to Theorem 8.4, H \UZ . RL, has a feasible solution
tree. Note that if one of the removal lists removes all the vertices from Sy,
the intersection graph is disconnected and if every connected component has
a solution tree so thus the whole hypergraph. According to Theorem 8.5,

m—1
U,24 RL; is also a minimum removal list. O

Now we consider insertion lists for windmill intersection graph. Note
that, if H has a feasible solution tree, there is no need for an insertion list.

Theorem 8.7. Let H =<V, S > be a hypergraph, wzthS {51, 52,55, ..., Sm }
and a windmill intersection graph on Sy. mIL(H) = >, 21 mIL(H[Sy, Sai, Sait1])-

Proof. As shown for Theorem 8.5. [

Theorem 8.8. Let H =<V, S > be a hypergraph, with S = {5, S2,S3, ..., Sm }
and a windmill intersection graph on Sy. Let I L; be a minimum feasible inser-

m—1
tion list for H[Sy, Sai, Soia], @ € {1,.., 2}, IL =, IL; is a minimum
feasible insertion list of H.

Proof. As shown for Theorem 8.6. O

9 Vertex Connected Triangular Chain Inter-
section Graphs

In this section we consider a vertex connected triangular chain intersection
graph with mT_l triangular intersection graphs, were each triangular is con-
nected to its neighbors by one different node, see Figure 19. We describe
the conditions for a feasible C'STP solution and suggest a minimum feasible
removal list and a minimum feasible insertion list.

Observation 9.1. Let H =<V, S > be a hypergraph, with S = {S1, Sa, 53, ..., S }
and a vertex connected triangular chain intersection graph. H|[Sa;_1, S2i, Saiv1,
forie{l,.., mT_l}, is a triangular intersection graph.
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Figure 19: Vertex Connected Chain Intersection Graph

Lemma 9.2. Let H =< V,;§ > be a hypergraph, with a vertex connected
triangular chain intersection graph. If the intersection graph hast sub graphs
which are triangles, then H has 2t + 1 clusters.

Proof. Proof by induction on ¢, the number of triangular induced sub graphs
in H.
If t =1 then G;,,;(H) contains only one triangular with three clusters.
Suppose the claim is correct for ¢ — 1. We prove it for ¢t. Gy, (H) has
t — 1 triangular induced sub graphs and 2(¢t — 1) + 1 = 2t — 1 clusters.
We add two clusters to add one more triangular to Gy, (H), and therefore,
2(t)+1=2t+ 1. O

Observation 9.3. According to Lemma 9.2, G (H) has m=L triangular

2
induced sub graphs.

Observation 9.4. Let H =<V, S > be a hypergraph, with S = {S1, Sa, S3, ..., S }
and a vertexr connected triangular chain intersection graph. Cluster sg; 1 is

a cut node that divides the intersection graph to clusters sets {Si, .., S2;}

and {S%19, ..., Sm}. Furthermore, H[S1, ..., Sai11] and H[S2i1, ..., Sm] have

a vertex connected triangular chain intersection graph, for i € {1, ..., ’”T_l}

Theorem 9.5. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }

and a vertex connected triangular chain intersection graph. If H[Ss; 1, Sa;i, Seiy1],1 €
{1, .., mT_l} has a feasible solution tree by paths, then H has a feasible solution

tree by paths.

Proof. Proof by induction on ¢, the number of triangular induced sub graphs

in Glnt(H) .
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If t = 1 then G (H) contains only one triangular. According to the
theorem assumption, this triangular has a feasible solution tree by paths.
This is a feasible solution tree tree by paths for H.

Suppose the claim is correct for ¢ — 1. We prove it for ¢. According to
Observation 9.4, s9,,, 1 is a cut node where H[S, ..., So,,_1] has a vertex con-
nected chain intersection graph with ¢ —1 triangles and H[S2,,—1, Sam, Som-2]
has a triangular intersection graph. According to the induction hypothesis,
HI[Si, ..., Som—_1] has a feasible solution tree. According to Observation 9.4,
Som—1 18 a cut node and HI[Sy, ..., Som_1] and H[So,_1, Som, Sams1] have a
feasible solution tree by paths. Therefore, according to [5], H has a feasible
solution tree tree by paths. O

Now we consider removal lists for vertex connected triangular chain in-
tersection graph. Note that, if H has a feasible solution tree, every removal
list may be empty.

Theorem 9.6. Let H =<V, S > be a hypergraph, with S = {5, S2,S3, ..., Sm }
and a vertex connected triangular chain intersection graph. mRL(H) =

>oih MRL(H[Si-1, S2i, Seita]), i € {1,.., 251},

1=

Proof. Proof that mRL(H) is a minimum removal list by induction on ¢, the
number of triangular induced sub graphs in G, (H).

If t = 1 then Gy, (H) contains only one triangular, according to the
theorem assumption, RL contains only the minimum feasible removal list of
this triangular. Therefore, mRL(H) is a minimum feasible removal list of H.

Suppose the claim is correct for t — 1. We prove it for t. According to
Theorem 9.5, s9;_1 is a cut node where H[S1, ..., Sg;_1] has a vertex connected
chain intersection graph with ¢ — 1 triangles and H[Ss;_1, Sat, So;11] has a tri-
angular intersection graph. Since S, 1 is a cut node, according to [5], then

mRL(H) = mRL(H|[Sy, ..., Sot—1]) + mRL(H[Sa—1, Sat, Sat+1]). According to
-2
the induction hypothesis, mRL(H[S1, ..., Sat—1) = > ;2 mRL(H[S2_1, S2i, S2i+1])
1

m—

which proves that, mRL(H) = %, % mRL(H[Ssi_1, Sa;, Sais1]), @ € {1, .., 21}
[

Theorem 9.7. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }
and a vertex connected triangular chain intersection graph.
Let RL; be a minimum feasible removal list for H[Sa;_1, S92, S2i4+1], © €

m—1
{1,..,22}. RL=\J,4 RL; is a minimum feasible removal list of H.
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Proof. According to Theorem 9.5, if every triangle in the vertex connected
chain has a feasible solution tree by paths, then H has a feasible solution.
Since RL; is a feasible removal list for H[So;_1, S2;, S2i+1], H[S2i—1, S2i, S2iv1]\
RL;, for every i € {1, .., mT’l}, has a feasible solution tree. According to

m=1 m=1
Theorem 9.6, H \ ;24 RL; has a feasible solution tree. Hence, |J,.3 RL;
is a minimum removal list of H. ]

Now we consider insertion lists for vertex connected triangular chain in-
tersection graph. Note that, if H has a feasible solution tree, there is no need
for an insertion list.

Theorem 9.8. Let H =<V, S > be a hypergraph, with S = {51, S2,S3, ..., Sm }

and a vertex connected triangular chain intersection graph.
1

m]L(H) = 21221 m[L(H[SQZ‘_l, Sas, S2i+1]>, 1€ {1, . mT—l}

Proof. As shown for Theorem 9.6.
]

Theorem 9.9. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }
and a vertex connected triangular chain intersection graph.
Let IL; be a minimum feasible insertion list for H[Sa;_1, 5%, Sei1], © €

m—1
{1,..,22}. IL=U,2 IL; is a minimum feasible insertion list of H.

Proof. As shown for Theorem 9.7. m

10 Edge Connected Triangular Chain Inter-
section Graphs

In this section we consider an Edge Connected Triangular Chain intersec-
tion graph, with m — 2 triangular intersection graphs. Each triangular is
connected to its neighbors by one different edge, see Figure 20. We describe
the conditions for a feasible C'STP solution and suggest a minimum feasible
removal list and a minimum feasible insertion list.

Lemma 10.1. Let H =< V. S > be a hypergraph, with S = {S1,Ss,S3, ..., S}
and an edge connected triangular chain intersection graph. G (H) has m—2
triangular induced sub graphs.
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Figure 20: Edge Connected Chain intersection graph

Proof. Proof by induction on ¢, the number of triangular induced sub graphs
in H.

If t = 1 then G;(H) contains only one triangular with three clusters,
and to check 3 — 2 =1 triangle.

Suppose the claim is correct for t — 1. We now prove it for t. G, (H) has
t —1 = m — 3 triangular induced sub graphs and m clusters. We add one
cluster to add one more triangular to Gy (H), t = (m+1)—3=m—2. O

Theorem 10.2. Let H =<V, S > be a hypergraph, with S = {Si, S, S3, S4, S5}
and an edge connected triangular chain intersection graph. If |Xi23] =
| Xo 34| =|Xs545|= 1, then H has a feasible solution tree by paths.

Proof. Let P; be a path spanning X;, for 1 < ¢ < 5. Let F;; be a path
spanning X ;, for ¢ # j. Let v 23 be the only vertex in X 53. Let va34 be
the only vertex in Xj24. Let v345 be the only vertex in X, ,4. Figure 21

presents a feasible solution by paths for H.
]

Lemma 10.3. Let H =< VS > be a hypergraph, with S ={S;, Si+1, Sit2, Sit3}
and an edge connected triangular chain intersection graph. If H[S;, Sit1, Sital

is a strongly satisfied triangle on S;, Siyo and H[S;i1, Siv2, Sivs] is a strongly
satisfied triangle on S;i1,Siv3, then H has a feasible solution tree by paths.

Proof. Consider Figure 22. Let P; be a path spanning X;, for 1 < i < 5.
Let P;; be a path spanning X ;, for i # j. If | X, ;1100 = 1, let v 4142
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Figure 21: Theorem 10.2 solution tree

be the only vertex in Xj;i1,40. Otherwise, let P ;11,42 be a path span-
ning X2 If [Xiv1ii2i3] = 1, let vip1442413 be the only vertex in
Xit1,i42i+3- Otherwise, let Piiq;,9:13 be a path spanning X 1 ;4243 Ac-
cording to Lemma 5.12, each strongly satisfied triangle has 2 possible solution
trees.

L If | Xiit1i42] = | Xit1,i42443] = 1. Figure 23.1 presents a feasible solu-
tion tree by paths for H.

2. If | X; 0| = [ Xit1i43] = 0. Figure 23.2 presents a feasible solution tree
by paths for H.

3. If | Xis1443] = 0 and | X, 41,42 = 1. Figure 23.3 presents a feasible
solution tree by paths for H.

4. If | X 10| = 0 and |X;41424+3] = 1. The construction of the tree is
similar to the solution tree shown in figure 23.3.
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Figure 22: Edge Connected Chain Intersection Graph with four clusters

Lemma 10.4. Let H =<V, S > be a hypergraph, with S = {S;, Si+1, Si+2, Si+3}
and an edge connected triangular chain intersection graph. If H[S;, Siv1, Siia]

is a strongly satisfied triangle on S;, Sivo and H[S; 1, Si12, Sit3] is a satisfied
triangle on S;y1, Sivs, then H has a feasible solution tree by paths.

Proof. Let P; be a path spanning X;, for 1 < ¢ < 5. Let F,; be a path
spanning X@j, for 7é ] If |Xi,i+1,i+2| = 1, let Ui i+1,i+2 be the OIlly ver-
tex in Xj;y1,42. Otherwise, let P ;11,42 be a path spanning X; ;i1 ,10. If
| Xit1i12i43] = 1, let V4142413 be the only vertex in X;iq49,13. Other-
wise, let Pjiq 42,13 be a path spanning X;i;;12:+3. According to Lemma
5.12 and 5.14, a strongly satisfied triangle has 2 possible solution tree and a
satisfied triangle has 3 possible solution tree.

L If | X148 = | Xig142443] = 1. Figure 24.1 presents a feasible solu-
tion tree by paths for H.

2. If | Xii1443) = 0 and | X 11.43] = 1. Figure 24.2 presents a feasible
solution tree by paths for H.

3. If | Xii0443) = 0 and | X 11.43] = 1. Figure 24.3 presents a feasible
solution tree by paths for H.

41



Pi.Hl Vi,i+1,i+2 Pi+1.'\+2 Vi+1,i+2,'|+3 P'|+2‘i+3

Pi 143 P'|+]..i+3

Piia : Piis1,isz | Pivisz ‘P'|+1.i+2.'\+3lp'|+2;|+3 ;

P Vi
i i+Li+2 Pis,is2,i43 ) Piizisz |
l | !

Pi,i+2

Figure 23: Theorem 10.3 solution tree

4. If | X;i42] = 0 and |Xi41412443] = 1. Figure 24.4 presents a feasible

solution tree by paths for H.

5. If | X2l = 0 and | X;41,443] = 0. Figure 24.5 presents a feasible solu-

tion tree by paths for H.

6. If | X 42| = 0 and |X;42443] = 0. Figure 24.6 presents a feasible solu-

tion tree by paths for H.

Theorem 10.5. Let H =< V,8 > be a hypergraph, with S = {Sj, ...
and edge connected triangular chain intersection graph. H has a feasible

solution tree by paths, if the following holds:

1. H[S;, Siv1,Siv2] is a strongly satisfied triangle on Sy, Siia, for i €
{2,...,m —2}.

2. H[S1,Ss, S5 is a satisfied triangle on So, Ss.

42



V'\,HI,HZ

Vi+1‘i+2"\+3

Vi+1"\+2.'\+3

1 Piis1 Pistie2 Pisa,isa i Piin A— Busiis Prazisa
' | “ § 1 —— |
Pi,is2 Pz Pis1,i43
Pl Viis1is2 p p ) p p 5 . .
. i1 izt P i+l Li+Li+2 L wiizis Pisa
2. '7 +1,i42 i i +2,i+3 I 5 I I I +1,i4+2 I +1,i+2,i+ : +2,i+3 I
- Vi.i "
3. '_P"'“ ol Pisisz i Pistiszina i Pistiss 4 6. | Piis : Piisaina I Pisais2 I Pissisziea | Pi:1iss }

P'l.'|+2

Figure 24: Theorem 10.4 solution tree

Proof. Proof by induction on ¢, the number of triangular induced sub graphs
in Gznt(H>

If £ = 1, according to Lemma 10.1, m = 3. In this case, G;,;(H) contains
only one triangular intersection graph, which is a satisfied triangle on Ss, Ss,
see Figure 25. According to Corollary 5.4, this triangular has a feasible so-
lution tree by paths.

If t = 2, according to Lemma 10.1, m = 4. In this case, Gy (H) is a
diamond intersection graph with & = {Sj, ..., 54}, which contains two trian-
gular intersection graphs, see Figure 26. H|[S), S2, S3] is a satisfied triangle
on Sy, S3 and H|[S,, S3,5,] is a strongly satisfied triangle on Sy, Sy. Accord-
ing to Corollary 6.11, this diamond has a feasible solution tree by paths.

Suppose the claim is correct for t — 1. We now prove it for ¢t > 2.
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Figure 26: Two triangular intersection graphs

HI[Si, ..., S;m_1] has an edge connected chain intersection graph. According
to the induction hypothesis, this hypergraph has a feasible solution tree, de-
note this tree as T'. Since H[S,,—3, Sy—2, Sm—1] is a strongly satisfied triangle
on Spy—3, Sm—1, either | X, _3m-2m-1| =1 or | X;_3m-1] = 0. According to
Lemma 5.12, T'[S,,—3, Sm—2, Sm—1] has one of two possible structures, pre-
sented in Figure 6, the first corresponds to the case | X,,—3m-2.m—1/ = 1 and
the second to the case | X,,—3,,—1| = 0.

According to Lemma 5.12, since H|[S;,—2, Sm—1, Sm] is a strongly satisfied tri-
angle on Sp,_o, Sy H[Sim—2, Sm—1, Sm] has a feasible solution tree, denote this
tree as T”. According to Lemma 10.3, H[S,,_3, Sim_2, Sm_1, Sm] has a feasible
solution tree by paths, denoted as T". If | X,,—3m—2.m—1| = 1 or | X;_3.m_1] =
0, then both T[S,,_ 3, Sm_2,Sm_1] and T'[S,,_3, Sm_2, Sm_1] have the same
structure and are therefore identical. In any case, T'[Sm—3, Sm—2, Sm-1] =
T'[Sm—3, Sm—2, Sm—1] and the two trees T" and 7" can be combined into one
tree, which is a feasible solution tree by paths of H. m

Theorem 10.6. Let H =< V,S > be a hypergraph, with S = {Si, ..., S}
and an edge connected triangular chain intersection graph. H has a feasible
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solution tree by paths, if the following holds:

1. H[S;, Siv1,Siv2] is a strongly satisfied triangle on S;, Siia, for i €
{2,...,m — 3}.

2. H[S1,Ss, S5 is a satisfied triangle on So, Ss.
3. H[Sim—2,Sm—1,Sm] is a satisfied triangle on Sp,_o, Sm_1-

Proof. According to Theorem 10.5, let T" be the solution tree for H where S
= {S1,..., Sm_1}. Since H[S,,_3,Sm—2,Sm_1] is a strongly satisfied triangle
on Spy—3, Sm—1, either | X, _3m-2m-1| =1 or | X_3m-1] = 0. According to
Lemma 5.12, T'[S,,_3, Sm_2, Sm_1] has one of two possible structures, pre-
sented in Figure 6, the first corresponds to the case | X,,—3m—2m—1| = 1 and
the second to the case |X,,_3m—1] = 0. According to Lemma 5.14, since
H[Sy—2, Sm—1,Sm] is a satisfied triangle on S,,—2, Sp—1, H[Sm—2, Sm—1,Sm)
has a feasible solution tree, denote this tree as T”. According to Theo-
rem 10.3, H[S;_3, Sm—2, Sm—1, Sm| has a feasible solution tree by paths, de-
noted as 7. If |X,—3m-2m-1| = 1, then both T[S;,_3, Sm—2,Sm-1] and
T'[Sm—3, Sm—2, Sm—1] have the structure presented in Figure 6 and are there-
fore identical. If | X,,_3,,,—1| = 0, then both T'[S,,,—3, Si—2, Sm—1] and T"[S;,—3, Sm—2, Sm—1]
have the structure presented in Figure 6 and are therefore identical. In any
case, T[Sy—3, Sm—2,Sm—1] = T"[Sm_3, Sm—2, Sm_1] and the two trees T" and
T" can be combined into one tree which is a feasible solution tree by paths
of H. O

Theorem 10.7. Let H =< V,§ > be a hypergraph, with S = {Si, ..., S}
and an edge connected triangular chain intersection graph. H has no feasible
solution tree by paths, if at least one of the following holds:

1. H[Sy, 52, S3] is not a satisfied triangle on Ss, Ss.
2. H[Sy—2,Sm—1,m] is not a satisfied triangle on Sp_2, Spm—1-

3. There isi € {2,...,m — 3} such that H[S;, Sit1, Si+2] is not a strongly
satisfied triangle on S;, Siia.

Proof. 1t H[Sy, Sy, S3] is not a satisfied triangle on Sy, S3, then according to
Corollary 6.11, H[S;, S2, S5, S4] which has a diamond sub intersection graph
does not have a feasible solution tree by paths. Therefore, according to
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Lemma 4.2, H does not have a feasible solution tree by paths.

If H[S;—2,Sm—1,5m] is not a satisfied triangle on S,,_2,S,,_1, then ac-
cording to Corollary 6.11, H[S,,—3, Sm—2, Sm—1, Sm] which has a diamond sub
intersection graph does not have a feasible solution tree by paths. Therefore,
according to Lemma 4.2, H does not have a feasible solution tree by paths.

If there is i € {2,...,m — 3} such that H[S;,S;;1,S;12] is not a strongly
satisfied triangle on S;,S;i9, in this case |X;;i1412] > 1 and |X; ;42| # 0.
If in addition |Xi,i+1| 7é 0 or |Xi+1,i+2| 7& 0, then H[SZ‘7SZ‘+17SZ‘+2] is not a
satisfied triangle on S;.1,S; 2 or S;, S;y1, and according to Corollary 6.11,
HI[S;, Sit1, Sita, Sits) or H[S;_1,S;, Sit1, Sit+e] which have a diamond sub in-
tersection graph do not have a feasible solution tree by paths. Therefore,
according to Lemma 4.2, if H has a sub graph that does not have a feasible
solution tree by paths, then H does not have a feasible solution tree by paths.

Otherwise, |Xi,i+1,i+2| > ]_, |Xi,i+2| 7é O, |Xi,i+1| = 0 and |Xi+1,i+2| = 0.
Suppose by contradiction that H has a feasible solution tree. Let P; be a
path spanning X;, for 1 <i < m. Let P, ; be a path spanning X ;, for ¢ # j.
Let P ;, be a path spanning X; ;, for ¢ # j # k. According to Lemma 4.7,
P, i11,i+2 has to be connected between P;_; ;11 and P41 49,13, as shown in
Figure 27. According to Lemma 4.5, P, ;4> can not be connected between
Pi_1ii41 and P42, or between P10 and Piyq 42,43 According to
Lemma 4.6, F; ;12 can not be connected to a vertex connecting F;_1;+1
and P; ;11 42, or connected to a vertex connecting P ;1142 and Piij 12443
Therefore, P, ;12 can not be connected to P ;11,42 in any way. Therefore, in
this case, P[S; [ Sit2] is not spanned by a connected path, and hence, H has
no feasible solution tree by paths.

]

Now we consider removal lists for edge connected triangular chain inter-
section graph. Note that, if H has a feasible solution tree, every removal list
may be empty.

Lemma 10.8. Let H =<V, S > be a hypergraph, with S ={Si, ..., S} and
an edge connected triangular chain intersection graph.

Let RLY142 be a minimum feasible removal list for triangle H[S;, Sit1, Sita],
such that H[S;, Siy1, Sipo] \RLY 142 s q strongly satisfied triangle on S, S o,
forie{2,...,m—3}.

Then, RL>12 0 for i € {2,...,m — 3}, are pairwise disjoint.
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| P'I-l.'l.'|+1 | P'I.'|+1.'|+2 P'|+1.'|+2.'|+3 [
|
[ I | |

Figure 27: Path: P11, P12, Pivviv2i13

Proof. Suppose there is (v, S") € RLV L2 RLITLi+2 Obviously, this

may happen only if j =7+ 1or j =17+ 2.

Consider first case j = 7 + 1. According to Theorem 5.17, RLYTLi+2 —
argmin(|RL; iy2|, |RLii+1+2|) and RLTHH253 = qrgmin(|RLiy1 43|, |[RLiv1iv2.443])-

If RLWHS42 = L,y and RLTV2603 = RL. oy REWHL2 po
moves vertices v € X; ;45 from S; or S;1o and RLTHT2T3 removes vertices
v € Siy1()Site[) Sivs from either S;yq, S;yo or S;13. Hence these lists are
disjoint.

If RL>H2 = RL; 19 and RLTYH203 = RL, 1y o050 RLYTLHH2 removes
vertices v € X, ;49 from S; or S; 9 and RL™T243 removes vertices from
either S;11 or S;;3. Hence these lists are disjoint.

If RLYWH42 = RL; 100 and RL7THF23 = RL, 4y i0s. RLYTLT2 e
moves vertices v € S; () Siz1 () Sizo from either S, S;y1 or S; o and RLTLH26H3
removes vertices v € X1 ;43from either S;1; or S;y3. Hence these lists are
disjoint.

If RLi,H—l,i—i—Q — RLi,i+l,i+2 and RLi+1,z‘+2,i+3 — RLi+1,i+2,i+3' RLi,i+1,i+2
removes vertices v € S; () Siy1[) Size from either S;, ;41 or S; o and RLITLIF2+3
removes vertices v € S;y1 () Siz2 () Sivs from either S;,q, Si1o or S; 3. Hence
these lists are disjoint.

Consider case j = i + 2. According to Theorem 5.17, RL“*bLi+2
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CL’I"ng‘TL(|RLZ‘7i+2|, |RLi,i+1,i+2|) and RLi+2’i+3’i+4 = CL’T‘ng.TL(|RLZ'+27i+4I, |RL7;+277;+37Z‘+4|).

If RL¥*N+2 = RL,,  and RL#F2H5% = RL o a0y RLHFL2 re
moves vertices v € X; ;1o from S; or S;,9 and RL™>737 removes vertices
v € Siya()Sits[) Siva from either S;io, Siy3 or S;14. Hence these lists are
disjoint.

If RLi,i+1,i+2 — RLi,i+2 and RLi+2,z‘+3,i+4 — RLi+2,i+4- RLi,i—i—l,i—i—Q re-
moves vertices v € X; ;o from S; or S;,9 and RLT>737 removes vertices
v € X,y9,4+4 from either S;9 or S;14. Hence these lists are disjoint.

If RL®H42 = RL; ;1400 and RL723H = RL, 0,0y, RLYTLH2 re-
moves vertices v € S; () Si1 () Size from either S, S;y1 or S; o and RLT2iH30H4
removes vertices v € X914 from either S;1o or S;14. Hence these lists are
disjoint.

If RLi,z’+1,i+2 — RLi,z’+1,z’+2 and RLi+2,i+3,i+4 — RLi+2,i+3,i+4~ RLi,i+1,i+2
removes vertices v € S; () Sir1 () Size from either S;, S; 1 or S;yp and RLT2iH3:0H4
removes vertices v € S;yo()Sits () Sita from either S; o, S;i3 or S;y4. Hence

these lists are disjoint.
O

Lemma 10.9. Let H =<V, S > be a hypergraph, with S ={S1, ..., S} and

an edge connected triangular chain intersection graph.

Let RLY*3 be a minimum feasible removal list for triangle H|[Sy, S, S3], such

that H[Sy, Sz, S3) \ RLY?3 is a satisfied triangle on S, Ss.

Let RLYY7%2 be a minimum feasible removal list for triangle H[S;, Si11, Sita],
such that H[S;, Sit1, Siro] \RL" 142 is a strongly satisfied triangle on S;, Siya,
forie{2,...,m—3}.

Then RLY?3 and RLYTHH2 ) for i € {2,...,m — 3}, are pairwise disjoint.

Proof. Let RLY*3 = RL7+19+2 Suppose thereis (v, S") € RLY?3 (N RLIITLI+2,
Obviously, this may happen only if j =2 or 57 = 3.

Consider first case j = 2.

According to Theorems 5.16 and 5.17, RL*** = argmin(|RLg4|,|RL23.4])
and RLY*3 = argmin(|RLy 3|, |RLa 3|, |RL123]).

If RLY?3 = RL; 3 and RL*34 = RLy3.4. RLY?3 removes vertices v € X3
from S; or Sz and RL?*** removes vertices v € Sy () S3() S4 from either Sy, S3
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or S4. Hence these lists are disjoint.

If RLY*3 = RL; 3 and RL*** = RLy4. RLY*? removes vertices v € X 3
from S; or S3 and RL*** removes vertices v € Xy, from either Sy or Sj.
Hence these lists are disjoint.

If RLY*% = RLy3 and RL*** = RLy34. RLY%3 removes vertices v € X 3
from Sy or Sy and RL?*** removes vertices v € Sy () S3() S4 from either Sy, S3
or Sy. Hence these lists are disjoint.

If RL'Y?3 = RL, 3 and RL*34 = RLs 4. RLY?3 removes vertices v € Xag3
from Sy or S3 and RL*** removes vertices v € Xy, from either Sy or Sj.
Hence these lists are disjoint.

If RL“*3 = RLy53 and RL*** = RLs34. RL“*? removes vertices
v € S1()S2()S3 from either S;, Sy or S3 and RL*3* removes vertices v €
So ()53 Sy from either Sy, S5 or Sy;. Hence these lists are disjoint.

If RLY*3 = RLy53 and RL*3* = RLy,. RLY*3 removes vertices v €
S1 N S2( S3 from either Sy, Sy or S3 and RL*** removes vertices v € Xy 4
from either Sy or Sy. Hence these lists are disjoint.

Consider case j = 3.
According to Theorems 5.16 and 5.17, RL**% = argmin(|RLs5|,|RL345|)
and RLY?3 = argmin(|RLy 3|, |RLa 3|, |[RL123]).

If RLY23 = RL, 3 and RL3%5 = RL3 5. RLY23 removes vertices v € Xi3
from S; or Sz and RL**5 removes vertices v € S3() S4[) S5 from either S3, S,
or Ss. Hence these lists are disjoint.

If RLY*3 = RLy 3 and RL*" = RL3 5. RLY®3 removes vertices v € X 3
from S; or S; and RL>*® removes vertices v € X35 from either S3 or Ss.
Hence these lists are disjoint.

If RLY3 = RLy3 and RL3* = RL345. RLY%3 removes vertices v € X 3

from Sy or S3 and RL**5 removes vertices v € S3() S4[) S5 from either Ss, S,
or S5. Hence these lists are disjoint.

49



If RLY*3 = RLy5 and RL*>*® = RL3 5. RLY*? removes vertices v € Xo 3
from Sy or S3 and RL**° removes vertices v € X35 from either Sz or Ss.
Hence these lists are disjoint.

If RLY*3 = RLy53 and RL3>* = RL345. RL“** removes vertices
v € S1()52()Ss from either S;, Sy or S3 and RL?%5 removes vertices v €
S3()S4() S5 from either Ss, Sy or Ss.. Hence these lists are disjoint.

If RLY** = RL;53 and RL*>*® = RL35. RL'"“*® removes vertices v €
S1 N S2 ) S3 from either Sy, Sy or S3 and RL** removes vertices v € X35
from either S35 or S5. Hence these lists are disjoint.
Similarly, the proof holds for RL™~2™~1™ and RL™ 142 for ¢ € {2,...,m—
3. O

Theorem 10.10. Let H =<V, S > be a hypergraph, with S = {Si, ..., S}

and an edge connected triangular chain intersection graph.

Let RLY?3 be a minimum feasible removal list for triangle H[S,, So, Ss], such

that H[S, Sy, S3] \ RLY?3 is a satisfied triangle on Ss, Ss.

Let RL™2™=Y™ be q minimum feasible removal list for triangle H[Sp_2, Sm—1, Sm),
such that H[S,, 2, Sm_1, Sp] \RL™™2m=1™ s q satisfied triangle on Sy, Spm_1.

Let RLY4%2 be a minimum feasible removal list for triangle H[S;, Si11, Sita],

such that H|[S;, Sii1, Siy2] \RL12 4s q strongly satisfied triangle on Sy, Siyo,
forie{2,..,m—3}.

Let RL = RLY*3|J RL™—2m~1m]| J
RL is a feasible removal list of H.

i,i4+1,i42
i€{2,...,m—3} RL :

Proof. In H\RL, RL"*3 and RL™ %™~1™ are satisfied triangles and RL%"*142
is a strongly satisfied triangle, for i € {2,...,m — 3}. According to Theorem
10.6, H \ RL has a feasible solution tree by paths, therefore, RL is a feasible
removal list for H. O

Theorem 10.11. Let H =<V, S > be a hypergraph, with S = {Si, ..., Sm}

and an edge connected triangular chain intersection graph.

Let RLY%3 be a minimum feasible removal list for triangle H[Sy, S, S3], such

that H[S, Sa, S3] \ RLY?3 is a satisfied triangle on Ss, Ss.

Let RL™2™=Ym be g minimum feasible removal list for triangle H[Sp_2, Sm—1, Sm),
such that H[Sy, o, Sm_1, Sp] \RL™2m=1™ s q satisfied triangle on Sy, Spm_1.

Let RLYY%2 be a minimum feasible removal list for triangle H[S;, Si11, Sita],

such that H[S;, Sit1, Siro] \RL>1%2 is a strongly satisfied triangle on S;, Siya,
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forie{2,...,m—3}.
Let RL = RIS RLY 10 Uy gy RESH,
RL is a minimum feasible removal list of H.

Proof. According to Theorem 10.10, mRL(H) < |RLY?3| + |RL™2m~1m| 4
2253 ‘RLi,i+1,i+2|.

Assume RL’ is a minimum feasible removal list for H.

Let RLV3 = RL'[Sy,Ss, Sy, RL™ 247 — RI'[S, 5, Sm_1,Sm] and
RL/bHLH2 — RL/[Sm_Q, Si_1, Sm], for ¢ € {2, e, m — 3}

According to Lemma 4.4, RL'[S;, S, S3] is a feasible removal list for H[S}, S, S3).
According to Lemma 4.4, RL'[S,,_2,Sim—1,Sm] is a feasible removal list for
H[Sy—2, Sm—1,Sm]. According to Lemma 4.4, RL'[S,,_2, Sy—1, Si] is a feasi-

ble removal list for H[S,, 2, Spm_1, Sm], fori € {2,...,m—3}. Since, RL'*3, R[/m~2m~1m
and RL'“TL+2 are pairwise disjoint, the same proofs hold as in Lemmas 10.8,

10.9 and 10.10. Therefore, |RL'| = |[RL/V23| 4| RL/™=2m—1m| £ 373 | RL/AHLIH2|,
Since, RL' is a feasible removal list, |RL'| = |RL'"*3| + |RL™~2m=1m| 4
217;53 |RL/i,i+17i+2| > \RL172’3| + ‘RLm—Q,m—l,ml + 22753 ’RLi,i+1,i+2|. []

Now we consider insertion lists for edge connected triangular chain inter-
section graph. Note that, if H has a feasible solution tree, there is no need
for an insertion list.

Lemma 10.12. Let H =< V|8 > be a hypergraph, with S = {S1,..., S}
and an edge connected triangular chain intersection graph..

Let ILYYH2 be g minimum feasible insertion list for triangle H[S;, Sii1, Sival,
such that H[S;, Siy1, Sio] +1 LY 1142 s q strongly satisfied triangle on S;, S o,
forie{2,....,m—3}.

Then, ILY Y2 for i € {2,...,m — 3}, are pairwise disjoint.

Proof. Suppose there is (v/,S’) € IL®*Li+2 M\ [[3TL+2 Obviously, this
may happen only if j =i+ 1or j =i+ 2.

Consider first case j = ¢ + 1. According to Theorem 5.19, IL»+Li+2 —
IL(i,i+2)+(i+1)) and [LH1i+2i43 — IL(i+1,i+3)+(i+2))' In this case, I Liit1it2
inserts vertices from X; ;o to Sjy; and RL™NT243 ingerts vertices from
Xit1,i+3 to Sito. Hence these lists are disjoint.

Consider case j = i + 2. According to Theorem 5.19, IL»+Li+2 —

i42,i43,i44 _ : 1,42
IL(i,i+2)+(i+1)) and ILH— Hditd — IL(1+271+4)+(1+3)) In this case, 1 vtlat
inserts vertices from X; ;1o to S;y; and RL™273 ingerts vertices from
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Xit2,i+a to Siys. Hence these lists are disjoint.
n

Lemma 10.13. Let H =< V,§ > be a hypergraph, with S = {Si,...,Sm}
and an edge connected triangular chain intersection graph..

Let I L2 be a minimum feasible insertion list for triangle H[S;, Siy1, Sita),
such that H[S;, i1, Sito] I L1142 s q strongly satisfied triangle on S;, Siya,
forie{2,...,m—3}.

Let ILY?3 be a minimum feasible removal list for triangle H|[Sy, S, S3], such
that H[Sy, Sy, S3] + ILY?3 is a satisfied triangle on S, Ss.

Then ILY*3 and IL"TYH243 " for ¢ € {2,...,m — 3}, are pairwise disjoint.

Proof. Suppose there is (v, S") € ILY?3 N IL77+19+2 Obviously this may
happen only if j =2 or j = 3.

Consider first case j = 2.According to Theorems 5.19 and 5.18, IL?3* =
IL(274)+(3)) and IL1’2’3 = argmz'n(|IL(1,3)+(2)|, |IL(172)+(3)|).

If L3 = IL13)4(2). In this case, IL"*? inserts vertices from X3 to
Sy and RL*** inserts vertices from X5 4 to S3. Hence these lists are disjoint.

If ILY*3 = IL(19)+(3). In this case, IL"*3 inserts vertices from X, to
S5 and RL*3* inserts vertices from Xo4 to S3. Hence these lists are disjoint.

Consider case j = 3. According to Theorems 5.19 and 5.18, IL>*% =
ILg5) 1) and ILY® = argmin(|[ILag)+@)| 1 TLa2)+3)])-

If 10123 = IL(13)+(2)- In this case, ILY?3 inserts vertices from X3 to
Sy and RL**® inserts vertices from X35 to Sy. Hence these lists are disjoint.

If ILY?? = IL(19)4(3). In this case, IL"** inserts vertices from X to
Ss and RL**5 inserts vertices from X35 to Sy. Hence these lists are disjoint.
Similarly, the proof holds for IL™ %m=1m and [LH*142 for 4 € {2,...,m —
31 O

Theorem 10.14. Let H =<V, S > be a hypergraph, with S = {Si, ..., Sm}

and an edge connected triangular chain intersection graph.

Let ILY?3 be a minimum feasible insertion list for triangle H[S1, S, S3], such

that H[Sy, Sa, S3) U ILY*? is a satisfied triangle on S,, S3.

Let IL™=2™m=1™ e g minimum feasible insertion list for triangle H|[Sn_2, Sm—1, Sm),
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such that H|[Sy,_o2, Sm_1, Sm] J IL™2™m=1™ js g satisfied triangle on Sy,_o, Sp_1.
Let TLY5%2 be q minimum feasible insertion list for triangle H[S;, Siv1, Siv1],
such that H[S;, Siy1, Sit1] J TLY 112 s a strongly satisfied triangle on S;, Siyo,
forie{2,...,m—3}.

77777

IL is a minimum feasible insertion list of H.

Proof. The proof is similar to Theorems 10.10 and 10.11. [

11 One Chordless Cycle Intersection Graphs

In this section we consider a One Chordless Cycle intersection graph. We
describe the conditions for a feasible C'STP solution and suggest a minimum
feasible removal list and two minimum feasible insertion lists. The first in-
sertion list, inserts a vertex from each intersection to the same cluster. The
second insertion list, inserts the same vertex from an intersection to all the
clusters that do not include him.

Theorem 11.1. Let H =< V,§ > be a hypergraph, with S = {S1, ..., Sm},
m > 4, and a one chordless cycle intersection graph. H has no feasible
solution tree by paths.

Proof. Since CSTP is a special case of C'STT and according to Theorem
2.1, H has no feasible solution tree by paths. O

Now we consider removal lists for one chordless cycle intersection graph.

Theorem 11.2. Let H =< VS > be a hypergraph, with S = {51, ..., S}
and a one chordless cycle intersection graph.

Let RL = argmin(RLya, RLy3, ..., RLyy—1m, RLim1). RL is a feasible re-
movwal list of H and is the removal list which removes an edge from G (H).

Proof. Without loss of generality, suppose, RL = RL; ;4+1, for some 1 < i <
m—1. In H\ RL;;+1, | Xii+1| = 0 and in the intersection graph the edge
(i, 8i+1) is removed, so the intersection graph of H \ RL; ;1 is a path. Let
P, be a path spanning X;, for i € {1,..,m}. Let P,;;; be a path spanning
Xi,it1. Figure 28 presents a feasible solution by paths for H \ RL; ;1.

A similar proof applies for case RL = RL,, ;. m
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Figure 28: Theorem 11.2 solution tree

Theorem 11.3. Let H =< V|8 > be a hypergraph, with S = {Si, ..., Sm}
and a one chordless cycle intersection graph.

Let RL = argmin(RLy 2, RLs3, ..., RLyy_1 m, RLy,1). RL is a minimum fea-
sible removal list of H.

Proof. Suppose by contradiction, that RL is not a minimum removal list.
Let L be a minimum removal list of H. By Theorem 11.2, RL represents the
minimum removal list such that, one of the edges of the intersection graph
is removed. Since |L| < |RL|, no edge was removed from the intersection
graph and no edge was added to the intersection graph. Therefore, H \ L
intersection graph is still a one chordless cycle intersection graph. According
to Theorem 11.1, H \ L does not have a feasible solution tree by paths.
Contradicting the assumption that L is a feasible removal list. O]

Theorem 11.4. Let H =< V,§ > be a hypergraph, with S = {Si, ..., S}
and a one chordless cycle intersection graph.

Let RL = argmin(RLy 2, RLs3, ..., RLiy—1m, RLy1). RL is the only mini-
mum feasible removal list of H.

Proof. According to Theorem 11.3, RL is a minimum feasible removal list
of H. Let L be the minimum removal list of H. All minimum removal lists
of H have to remove vertices so that one of G;,,(H) edges will be removed
and G, (H) will not be a one chordless cycle intersection graph. Otherwise,
according to Theorem 11.1, H \ L does not have a feasible solution tree by
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paths. RL represents the minimum removal list such that, one of the edges
of the intersection graph is removed. Therefore, RL is the only minimum
feasible removal list of H. m

Now we consider two minimum insertion lists for one chordless cycle in-
tersection graph.

Definition 11.5. Let H =< V, S > be a hypergraph, with S = {Si, ..., S}
and a one chordless cycle intersection graph.

Let S; € S and denote IL; = {(vi;+1,5;)| viiy1 € Xiipr, fori e {1,...j —
2,7+1,...,m—1}}. Note that, |[IL;| =m — 2.

Theorem 11.6. Let H =< V|8 > be a hypergraph, with S = {Si, ..., Sm}
and a one chordless cycle intersection graph.
IL; is a feasible insertion list of H.

Proof. Let P; be a path spanning X;, for 1 < i < m. Let P;4; be a
path spanning X; ;1. Let v;;41 be the vertex chosen from S;()S;+;. Ver-
tices v; 41, for i € {1,..7 — 2,5 + 1,...,m — 1}, are connected by a path
Vj41,j42) Vj+2,j4+35 -3 Um—1,ms -+ Uj—2, 51, denote this path by P EVGI‘y B,H-l
is connected to the corresponding vertex v; 41, for ¢ € {1,....m — 1}}. S;
is spanned by Pj i1, P’ and P;_; ;. Figure 29 presents a feasible solution by
paths for H + I'L;.

m

p p Visij+2z  Vis2j43 Vis3j+4 Vm,1 Vij-2,j1
R BN Y SR L S
Pis1j+2| Pjszjss| Pissjsa Pm1 Pi-zj1
P]+1 PJ+2 Pj+3 Pm Pj-2

Figure 29: Theorem 11.6 solution tree
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Theorem 11.7. Let H =< VS > be a hypergraph, with S = {S1,..., S}
and a one chordless cycle intersection graph.
IL; is a minimum feasible insertion list of H.

Proof. According to Theorem 11.6, IL; is a feasible insertion list of H. Ac-
cording to the definition of IL;, |[IL;| = m — 2. According to Theorem 4.8,
and since C'ST P is a special case of C'STT and according to Theorem 2.1,in
every insertion list there are at least m — 2 insertions. /L; is a minimum
feasible insertion list of H. O]

Definition 11.8. Let H =< V, S > be a hypergraph, with S = {Si, ..., Sm}
and a one chordless cycle intersection graph.

Choose an intersection from {X1.2, Xo3, ..., Xon—1,m, Xim1}, denote by X; ;1.
Choose a vertex v € Xj 41 .

Denote IL, = {(v,51), (v, S2), (v,53), ..., (v, Sj-1), (v, Sjt2), ..., (v,.5m) }.
Note that, |IL,| =m — 2.

Theorem 11.9. Let H =< V|8 > be a hypergraph, with S = {Si, ..., Sm}
and a one chordless cycle intersection graph.
1L, is a feasible insertion list of H, where in H + IL,, v € S;,Vi.

Proof. In H + IL,, v € S; for every S; € §. Let P; be a path spanning X,
for 1 < i < m. Let P,;4; be a path spanning X;,,1. Let v be the chosen
vertex. Every P;;y; is connected in one end point to v and the other end
point to P;, see Figure 30. Figure 30 presents a feasible solution by paths for
H+1T1L,.

O

Theorem 11.10. Let H =<V, S > be a hypergraph, with S = {Si, ..., Sm}
and a one chordless cycle intersection graph.
1L, is a minimum feasible insertion list of H, where in H + IL,, v € S;Vi.

Proof. According to Theorem 11.9, IL, is a feasible insertion list of H. Ac-
cording to the definition of IL,, |IL,| = m — 2. According to Theorem 4.8,
and since C'ST'P is a special case of C'STT and according to Theorem 2.1,
in every insertion list there are at least m — 2 insertions. IL, is a minimum
feasible insertion list of H. m
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Figure 30: Theorem 11.9 solution tree

12 Two Chordless Cycles With A Separating
Edge Intersection Graphs

In this section we consider a Two Chordless Cycle With a Separating Edge
intersection graph, see Figure 31. We describe the conditions for a feasible
CSTP solution and suggest a minimum feasible removal list and two mini-
mum feasible insertion lists. The first insertion list, inserts the same vertex
from an intersection to all the clusters that do not include him. The second
insertion list, inserts a vertex from each intersection to the same cluster.

Definition 12.1. Let H =< V,§ > be a hypergraph and a two chord-
less cycles with a separating edge (s1,S2) intersection graph. The removal
of modes {s1,s2} and edge (s1,s2) creates two connected components, cor-
responding to the clusters collections S,,Sy. Let Sa = {R3,...,R3,} and
Sp ={RS,...,RY }. Let mqy and my be the number of clusters in S, and
Sy, respectively.

Theorem 12.2. Let H =< V.S > be a hypergraph and a two chordless cycles
with a separating edge (s1, s) intersection graph. If maz{mg,my} > 2, H
has no feasible solution tree by paths.

Proof. 1t maz{mg,, my} > 2, at least one of the cycles is a chordless cycle with
at least four nodes. Since C'STP is a special case of C'STT, then according
to Theorem 2.1, H has no feasible solution tree by paths. O
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Figure 31: Two Chordless Cycle With A Separating Edge intersection graph

Now we consider removal lists for two chordless cycles with a separating
edge (s1, s2) intersection graph.

Definition 12.3. Let H =< V| S > be a hypergraph and two chordless cycles
with a separating edge (s1, S2) intersection graph.

LetRL2; , = {(v,R})lv € R¢N R}, fori € {3,..,m—1}} and let RLY; ; =
{(v, R))lve RN RY,, forie{3,..,m—1}}.

Let RL3 3 = {(v, S2)|v € So (R4} and let RLY 5 = {(v, S2)|v € S2 (| R3}

b Let RLY, 1 = {(v, R}, )|lv € Ry, (151} and let RLE’n]m1 = {(U,anb)|v S
Ry, (S1} .

Theorem 12.4. Let H =< VS > be a hypergraph and two chordless cycles
with a separating edge (s1, S2) intersection graph.

Let RL“* = argmin(RL, ..., RLS, . RLS, |)Jargmin(RLY,, ..., RL
RL*" is a feasible removal list of H.
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Proof. RL*" removes an edge such that both end nodes correspond to clusters
from S,, and an edge such that both end nodes correspond to clusters from
Sy, see Figure 32.1 In this case, Gy, (H \ RL*) is a tree. According to
Lemma 4.2, it has a feasible solution tree by paths. O

Theorem 12.5. Let H =<V, S > be a hypergraph and two chordless cycles
with a separating edge (s1, S2) intersection graph.

Let RL* = RLy»Jargmin(RLS 5, ..., RLE,
RL* is a feasible removal list of H.

RL?

a—1,mq? ma,1>'

Proof. RL* removes the separating edge (s1, s2) and an edge such that both
end nodes correspond to clusters from §,, see Figure 32.2 In this case,
Gii(H \ RL“) is a path. Since a path is a special case of a tree and ac-
cording to Lemma 4.2, it has a feasible solution tree by paths. O

Theorem 12.6. Let H =<V, S8 > be a hypergraph and two chordless cycles
with a separating edge (s1, S2) intersection graph.
Let RL® = RLyJargmin(RLY, ..., RL! RLY, ).

mp—1,myp?
RL" is a feasible removal list of H. o

Proof. RL® removes the separating edge (s, sp) and an edge such that both
end nodes correspond to clusters from Sy, see Figure 32.3 In this case,
Gint(H \ RL?) is a path. Since a path is a special case of a tree and ac-
cording to Lemma 4.2, it has a feasible solution tree by paths. O

Theorem 12.7. Let H =<V, S8 > be a hypergraph and two chordless cycles
with a separating edge (s1, S2) intersection graph.

Let RL = argmin(RL*®, RL*, RL®). RL is a minimum feasible removal list
of H.

Proof. According to Theorem 2.1, if G;,,(H) contains a chordless cycle, H
has no feasible solution tree. Therefore, every removal list has to remove at
least two edges from the intersection graph, one from each cycle.

1. RL*® chooses the minimal list, such that the list removes an edge with
both end nodes that correspond to clusters from S, and an edge with
both end nodes that correspond to clusters from Sy, see Figure 32.1.

2. RL® chooses the minimal list, such that the list removes the separat-
ing edge (s1,s2) and an edge with both end nodes that correspond to
clusters from S,, see Figure 32.2.
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Figure 32: Possible removals

3. RL® chooses the minimal list, such that the list removes the separat-
ing edge (s1,s2) and an edge with both end nodes that correspond to
clusters from Sy, see Figure 32.3.

RL is a minimum possible option from the three removal lists, so that H\ RL
has a feasible solution tree by paths. O]

Now we consider insertion lists for two chordless cycles with a separating
edge (s1, s2) intersection graph.

Definition 12.8. Let H =<V, S8 > be a hypergraph and two chordless cycles
with a separating edge (s1, S2) intersection graph.

Let X, = {(RFfNR{L) T Xf‘wrl contains the vertices of the intersection
of R{ and RY,,, fori € {3,..,m —1}. Let XP; 3 = {(RPNRP1)} Xy
contains the vertices of the intersectwn of R? and Rz+17 forie{3,...m—1}.

Let X545 = {(S2(1R3)}, X33 contains the vertices of the intersection of
Sy and RY. Let X84 = {(S2 N RY)}, XJ 4 contains the vertices of the inter-
section of Sy and RS,

Let X3, ={(S1NR3.)} X5 0 contams the vertices of the intersection

of S1 and ana. Let X 1 ={(S1 ﬂ R ) X, 1 contains the vertices of the
intersection of Sy and R,
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Definition 12.9. Let H =<V, S8 > be a hypergraph and two chordless cycles

with a separating edge (s1, S2) intersection graph.

Choose arbitrarily an intersection {X12, X85, ..., X7 1 .,

X711 Choose arbitrarily a verter v, € X7, .

Let ILy, = {(Va; S1), (Va, S2); (Vas BY), ooy (Va, RS _1), (Va, R y9), ooy (Va, By, )}
Choose arbitrarily an intersection {X12, X34, ..., X0 X! |}, denote

by X;’JH. Choose arbitrarily a vertex vy, € X;jﬂ .

Let ILy, = {(vs, S1), (s, S2), (vp, RE), ..., (v, R?_l), (Vp, R?+2)> weey (Up, anb)}.

Definition 12.10. Let H =< V.8 > be a hypergraph and two chordless
cycles with a separating edge (s1, s2) intersection graph.
LetILy, v, = IL,,\JIL,,.

X1}, denote by

Theorem 12.11. Let H =< V,§ > be a hypergraph and two chordless
cycles with a separating edge (s, s2) intersection graph. IL,, ,, is a feasible
insertion list of H, where in H + 1L, ,,, v, € RV, vy € Rf‘v’i and v,, vy €
S1N) Sa.

Proof. Let P? be a path spanning X¢, for R? € S,. Let P} be a path spanning
X?b for R? € S,. Let P11 be a path spanning X7, Vi . Let Piljiﬂ be a
path spanning X2i+1Vi . Let P 5 be a path spanning X5 . Let v,, v, be the
chosen vertices from v, € X Fin and v, € X J”J +1- P12 is connected between
v, and vy Pf;,; is connected between v, and P/, Vi. P,Lbz 41 is connected
between v, and PP, Vi. Figure 33 presents a feasible solution by paths for
H+1L,,,,.

]

Theorem 12.12. Let H =< V. § > be a hypergraph and two chordless cycles
with a separating edge (s1, s2) intersection graph. Let I L, ,, = IL,, \JIL,,.
IL,, ., s a minimum feasible insertion list of H, where in H 4 IL,, ,,, Vg €

RV, vy € RVi and vg, vy € S1() Se.

Proof. According to Theorem 12.11, IL,, ,, is a feasible insertion list of H.

IL,, inserts vertex v, to m, — 2 clusters, according to Theorem 4.8, and
since C'STP is a special case of C'STT and according to Theorem 2.1, in
every insertion list there are at least m — 2 insertions, therefore, IL,, is a
minimum feasible insertion list for H[S,] which is a one chordless cycle. IL,,
inserts vertex v, to m; — 2 clusters, according to Theorem 4.8, and since
CSTP is a special case of C'STT and according to Theorem 2.1, in every
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Figure 33: Theorem 12.11 solution tree

insertion list there are at least m — 2 insertions, therefore, IL,, is a minimum
feasible insertion list for H|[Sy] which is a one chordless cycle. According to
5], mRL(H) = mRL(H|[S1, S, RS, ..., R}, 1) + mRL(H[S1, So, R, ..., RY, ]) =

\IL,,|+|IL,,| , therefore, IL,, ,, is a minimum feasible insertion list of H. [

Definition 12.13. Let H =< V.S > be a hypergraph and two chordless

cycles with a separating edge (s1, s2) intersection graph.

Choose arbitrarily a verter v, ; € X{;, fori € {2,...,m, — 1}.

Let TLY = {(v{;11,51)| where vf,,, € X7y, fori €{2,...,m, — 1}}.
Choose arbitrarily a vertex v?,,, € X!\, forie{2,...,my —1}.

Let ILY = {(v0;,4, S1)| where 0%, € X}y, forie{2,...,my —1}}.

Definition 12.14. Let H =< V.8 > be a hypergraph and two chordless
cycles with a separating edge (s1, s2) intersection graph.
Let ILy = TLS\JILS

Theorem 12.15. Let H =< V. § > be a hypergraph and two chordless cycles
with a separating edge (s1, s3) intersection graph. ILy is a feasible insertion
list of H.

Proof. Let P be a path spanning of X?, for R* € S,. Let P’ be a path
spanning of X?, for R? € S,. Let P%,, be a path spanning of X¢,, . Let
P&-H be a path spanning of Xf”iﬂ . Let P; 5 be a path spanning of X; 5. Let
v{ ;.41 be a vertex chosen from X{, ., for i € {2,...,mq — 1}. Let v}, be

62



a vertex chosen from X7, ., fori € {2,...,my —1}. Allv{,,,, are connected
by a path vf, 3,073, .., V], —1.m, and every intersection spanned by P,
is connected to the corresponding vertex vf,; ;. All vll’” 41 are connected
by a path v’l’72,3,v’1”3,4, s Ulimbfl,mb and every intersection spanned by PiljiH
is connected to the corresponding vertex vll’m +1- P12 is connected between
v 53 and vll’,273. Figure 34 presents a feasible solution by paths for H + IL;.

a a
V1,ma-1,ma Vi34

V1.Ez,3 p
f = ce v O @) 12 Cr—Cj s & Pime

Pa: p: Ps :/ Py |PS Pme

Figure 34: Theorem 12.15 solution tree

Theorem 12.16. Let H =< V.8 > be a hypergraph and two chordless
cycles with a separating edge (sy,s9) intersection graph. IL; = IL&\JILY is
a minimum feasible insertion list of H.

Proof. According to Theorem 12.15, IL; is a feasible insertion list of H.
|IL{| = m, — 2 by definition. According to Theorem 4.8, and since C'STP
is a special case of C'STT and according to Theorem 2.1, in every insertion
list there are at least m — 2 insertions. Therefore, /L{ is a minimum feasible
insertion list for H|[S,] which is a one chordless cycle. |[IL%| = m; — 2 by
definition. According to Theorem 4.8, and since C'STP is a special case
of CSTT and according to Theorem 2.1, in every insertion list there are
at least m — 2 insertions. Therefore, L% is a minimum feasible insertion
list for H[S,| which is a one chordless cycle. According to [5], mRL(H) =
mRL(H|[S1, S2, RS, ..., R, 1) + mRL(H|[S1, S, R}, ...,Rf’nb]) = |ILY| + |ILY]
therefore, I L is a minimum feasible insertion list of H. O
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Observation 12.17. Similarly, Theorems 12.15 and 12.16, hold for [ L, =
TL§\JILY, such that ILG = {(v34,S2), (V5 4,.52), -y (Vo 1 mu>S2)s (Vi 1552) }
and [Lg = (/012),37 82)7 <U§,47 52)7 s (Ufnbfl,mzﬂ 52)7 (Uz%,lv SQ)}

13 Two Chordless Cycles With A Separating
Path Intersection Graphs

In this section we consider a Two Chordless Cycles With a Separating Path
intersection graph, see Figure 35. We describe the conditions for a feasible
CSTP solution and suggest a minimum feasible removal list and a minimum
feasible insertion list.

Figure 35: Two Chordless Cycles With a Separating Edge intersection graph

Definition 13.1. Let H =<V, S > be a hypergraph and two chordless cycles
with a separating path (s1, s2, S3) intersection graph. The removal of the nodes
{s1, 82,83} and edges (s1,$2) and (sq,s3) creates two connected components
corresponding to the clusters collections Su,Sy. Let S, = {RY, ..., R%, } and
S, = {RY, ...,Rf’nb}, such that m, and my the number of clusters in S, and
Sy, respectively, see Figure 35.
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Theorem 13.2. Let H =<V, S8 > be a hypergraph and two chordless cycles
with a separating path (s, Sa,s3) intersection graph. If max{mg,, my} > 2,
H has no feasible solution tree by paths.

Proof. If maz{m,, my} > 2, at least one of the cycles is a chordless cycle with
at least four nodes. Since C'STP is a special case of C'STT, then according
to Theorem 2.1, H has no feasible solution tree by paths. O]

Now we consider removal lists for two chordless cycles with a separating
path (s1, s9, s3) intersection graph.

Definition 13.3. Let H =<V, S8 > be a hypergraph and two chordless cycles
with a separating path (s1, se, S3) intersection graph.

Let X3y, = {(R{N R, 1)}, Xy contains the vertices of the intersection
of R and R{,,, fori e {4,...,m, — 1}. Let X}?iﬂ = {(R}’ﬂRin)}, XﬁiH
contains the vertices of the intersection of RY and RY, ,, fori € {4,...,my—1}.

Let X34 = {(Ss(R3)}, X5, contains the vertices of the intersection of
Ss and R. Let X§, = {(SsRY)}, X35, contains the vertices of the inter-
section of Sz and RY.

Let X3, 1 ={(S1 N R3.)}, X5, 1 contains the vertices of the intersection

of S1 and RY, . Let X2 1 = {(S1NRY,)}, XL, | contains the vertices of
the intersection of Sy and R}, .

Definition 13.4. Let H =<V, S8 > be a hypergraph and two chordless cycles
with a separating path (s1, se, S3) intersection graph.

Let RL2; , = {(v,R!)jv € X{ .} fori e {4,...,mq — 1} and let RLY, , =
{(v,RY)|Jv e X}, 1}, forie{4,....,my—1} .

Let RL3 4 = {(v, S5)|v € X§,} and let RLY , = {(v, S2)|v € X§,} .

bLet RL2 , = {(v,R% )lv € X%} and let RLY, | = {(v,R} v €
Xm 1} :

Definition 13.5. Let H =<V, S8 > be a hypergraph and two chordless cycles

with a separating path (s1, S2, s3) intersection graph.
Let RL*® = argmin(RLS 4, ..., RLS, _, . RL% )
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Uargmin(RLS ,, ..., RL) RLb ).

mp—1,mp? mp,

Theorem 13.6. Let H =< VS > be a hypergraph and two chordless cycles
with a separating path (s1, 2, s3) intersection graph.
RL*" is a feasible removal list of H.

Proof. RL*® removes an edge with end nodes that correspond to clusters
from S, and an edge with end nodes that correspond to clusters from Sy, see
Figure 36. In this case, G,;(H \ RL*?) is a tree. According to Lemma 4.2,
it has a feasible solution tree by paths.

¥ b
me-1 . OI’S

Figure 36: Gy (H \ RL*?)

]

Theorem 13.7. Let H =< VS > be a hypergraph and two chordless cycles
with a separating path (s1, 2, s3) intersection graph.

Let RL* = argmin(RLS 4, ..., RL;, ., RL}, ) Jargmin(RLy 2, RLy3).
RL* is a feasible removal list of H.

Proof. RL® removes an edge with end nodes that correspond to clusters from
S, and an edge from the separating path si, so, s3), see Figure 37. In this
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case, Gy (H \ RL®) is a tree. According to Lemma 4.2, it has a feasible
solution tree by paths.

a
Ima-1

rmz

Figure 37: Gy (H \ RL®)

]

Theorem 13.8. Let H =<V, S8 > be a hypergraph and two chordless cycles
with a separating path (s1, se, S3) intersection graph.
Let RL® = argmin(RLY,, ..., RLY, . RL: )Jargmin(RL1s, RLy3).

RL" is a feasible removal list of H.

Proof. RL removes an edge with end nodes that correspond to clusters from
Sy and an edge from the separating path (si, so, s3), see Figure 38. In this
case, Gi(H \ RL®) is a tree. According to Lemma 4.2, it has a feasible
solution tree by paths.

[

Now we consider insertion lists for two chordless cycles with a separating
path (s1, 2, 3) intersection graph.

Definition 13.9. Let H =< V| S > be a hypergraph and two chordless cycles
with a separating path (s1, se, $3) intersection graph.
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Figure 38: Gy (H \ RL)

Choose arbitrarily a verter vi;,, € X7, fori € {3,...,mq — 1}. Let IL} =
{(UgAv Sl)? EERE) (qua_l,ma7 Sl)}

Choose arbitrarily a vertex v?,,, € X?;,,, for i € {4,...,my — 1} and
choose arbitrarily a vertex vl | € St RY, . LetILY = {(v};, Ss), ..., (v, 1,53)}

Let IL172’3 = (X2,37 Sl) U(X1,27 S?))

Definition 13.10. Let H =< V. § > be a hypergraph and two chordless
cycles with a separating path (s1, s9, $3) intersection graph.
Let ILYy = ILS JILY I Ly 3.

Theorem 13.11. Let H =<V, § > be a hypergraph and two chordless cycles
with a separating path (s1, se, $3) intersection graph.
IL‘f:g 1s a feasible insertion list for H.

Proof. Let P® be a path spanning X2, for R € S,. Let P’ be a path
spanning X!, for R? € Sy. Let P?; , be a path spanning X¢, ., . Let P’ ,
be a path spanning X2i+1 . Let Py, P,, P3 be the paths spanning X, X5, X3,
respectively. Let P23 be the path spanning X;23. Let vf;,, be a vertex
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chosen from X{,,.;. Let v?,,, be a vertex chosen from X35, ;. All v,

are connected by a path v§,,...,v
pe :
by a path 0215, e, U

a
mge—1,mq

i+1 1s connected to the corresponding vertex v

a All P

1,041

and every intersection spanned by
¢ ‘ Lip1 are Conr;ected
my—1.my Um,1 and every intersection spanned by P?; ., is

: b - a
connected to the corresponding vertex vy, ;. P23 is connected between vg 4

and v}, ;. Figure 39 presents a feasible solution by paths for H 4 I ng
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Figure 39: Theorem 13.11 solution tree

14 Triangular Cactus Intersection Graph

In this section we consider a Triangular Cactus Intersection Graph. We de-
scribe the conditions for a feasible C'STP solution and suggest a minimum
feasible removal list and a minimum feasible insertion list.

Definition 14.1. Let H =<V, § > be a hypergraph and a triangular cactus

intersection graph.

Gint(S;, S1, Sy is a triangular leaf on S; if Gin(S;i, Si,S,) is connected to
Gt (H \ H[S;, S, S:]) with only one edge, which touches S;, see Figure 40.

Theorem 14.2. (/5] ) Consider a hypergraph H = (V,S) with a connected
intersection graph G (S). If node s', whose corresponding cluster is S, is a
leaf of Gine(S), then H has a feasible solution tree for CSTP problem if and
only if H[S\S'] has a feasible solution tree for CSTP problem.
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Theorem 14.3. (/5] ) Consider a hypergraph H = (V,S) with T a feasible
solution tree for CSTP problem. For any set of vertices U C (S;\(U;; 5;))
and RLy = {(U, S;)}, for S; € S, hypergraph H\RLy has a feasible solution
tree for CSTP problem.

Theorem 14.4. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., S }
and a triangular cactus intersection graph. If every triangular in G (H) has
a feasible solution tree by paths, then H has a feasible solution tree by paths.

Proof. Proof by induction on k, the number of nodes in G, (H).

If & < 2 then Gy, (H) corresponds to one or two clusters, therefore
Gint(H) is a tree. According to Lemma 4.2, there exists a feasible solution
tree by paths for H.

If & = 3 then Gy, (H) corresponds to three clusters. If G (H) is a
triangle then according to the theorem’s assumption, H has a feasible solution
tree by paths. Else, G, (H) is a tree and according to Lemma 4.2, has a
feasible solution tree by paths for H.

Suppose the claim is correct for k& < m. We now prove it for £ = m. If
Gint(H) has a node s* which is a leaf, then according to the induction hypoth-
esis H \ S* has a feasible solution tree, and according to Theorem 14.2, H has
a feasible solution tree. Otherwise, G;,,(H) contains a triangular leaf on s;,
denote this triangular as H[S;, S;, S|, see Figure 40. Let U = S; (N(S;U S»)
those vertices are in S;, but not in V' \ (S;|JS;JS,}). According to the
induction hypothesis, H[S \ {5}, S;-}] has a feasible solution tree by paths.
According to Theorem 14.3, H[S \ {5}, S:}] \ {U, S;} has a feasible solution
tree by paths, denote the corresponding tree as T”. Let v be the last vertex
in path 7"[S; \ U]. According to the theorem assumption and Theorem 14.3,
H|[S;, S, S,] has a feasible solution tree by paths, and according to Theorem
14.3, H[U, S, S;] also has a feasible solution tree by paths, denoted as T".
According to Corollary 5.4, H[U, S, S,] has four possible solution trees, see
Figure 41.

If | X;i] =1 let v;;, be the corresponding vertex, else let Py, the path
spanning X;,;. Let Py, be the path spanning X;,. Let Py; be the path
spanning X;;. Let P}, be the path spanning X;,. Let P, be the path span-
ning X,. Let P be the path spanning X;. If | X, ;| = 1, let u be the last
vertex in path Py;. Add an edge (v,u) to connect 7" and T"”. Let T be the
new tree (see Figure 41.1). T is a feasible solution tree by paths of H.

Let u be the last vertex in path Py,. Add an edge (v,u) to connect 7" and
T". Let T be the new tree (see Figure 41.2). T is a feasible solution tree by
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paths of H.
Let u be the last vertex in path Py ;. Add an edge (v, u) to connect 7" and
T". Let T be the new tree (see Figure 41.3). T is a feasible solution tree by
paths of H.
Let u be the last vertex in path Py,. Add an edge (v,u) to connect 7" and
T". Let T be the new tree (see Figure 41.4). T is a feasible solution tree by
paths of H.

Si

SI Sr

Figure 40: Theorem 14.4 H[S;, S, Sy

]

Theorem 14.5. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }
and a triangular cactus intersection graph. If there is at least one triangular
in Gint(H) that does not have a feasible solution tree by paths, then H has
no feasible solution tree by paths.

Proof. According to Lemma 4.2, H does not have a feasible solution tree by
paths. O

Now we consider removal list for triangular cactus intersection graph.

Lemma 14.6. Let H =< V.S > be a hypergraph, with S = {Si, S, S3, ..., Sm}
and a triangular cactus intersection graph.

Let n be the number of triangles in G (H). Let RL; be a minimum feasible
removal list for triangle T;, 1 € {1,..,n}. RL;, RL; are pairwise disjoint, for
i,je{l,.,n} ,i#j.
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P

Figure 41: Theorem 14.4 possible solution trees

Proof. Let RL; be the minimum removal list for H[S;, Sit1, Si+2| and RL; be
the minimum removal list for H[S;, Sj+1, ;2. If the intersection graph of
HIS;, Sit1, Sit2] and the intersection graph of H[S;, Sj11,Sj12] do not have
a node in common, then according to Theorem 5.8, RL;, RL; are pairwise
disjoint. If the intersection graph of H[S;, Sii1, Sit2] and the intersection
graph of H[S;, Sjt1, Sj42] have a node in common, then according to Theorem
5.8, RL;, RL; are pairwise disjoint, otherwise, G;,:(H ) has two triangles with
two nodes in common. Contradicting the structure of a triangular cactus
graph. O

Theorem 14.7. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., Sm }
and a triangular cactus intersection graph.

Let n be the number of triangles in G (H). Let RL; be a minimum feasible
removal list for triangle Q;, i € {1,..,n}. RL = J;_, RL; is a minimum
feasible remowal list of H.

Proof. According to Theorem 14.4, if every triangle in the triangular cac-
tus intersection graph has a feasible solution tree by paths, then H has a
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feasible solution. Since RL; is a minimum feasible removal list for triangle
Qi, Q: \ RL;, for every i € {1,..,n}, has a feasible solution tree. Accord-
ing to Theorem 14.4, H \ |J_, RL; has a feasible solution tree. According
to Lemma 14.6, mRL(H) < > " | |RL;| =Y., mRL,. RL is a feasible re-
moval list of H, therefore, a feasible removal list for Q;, for every i € {1,..,n},
|RL| =" | |RL[Q;]| > >_7_, mRL;. Hence and according to Theorem 14.4,
RL = J!_, RL; is a minimum feasible removal list of H. O

Now we consider insertion lists for triangular cactus intersection graph.

Lemma 14.8. Let H =< V.S > be a hypergraph, with S = {S1, S, S3, ..., Sm}
and a triangular cactus intersection graph.

Let n be the number of triangles in Gy, (H). Let IL; be a minimum feasible
insertion list for triangle Q;, i € {1,..,n}. IL;, IL; are pairwise disjoint, for
i,j€{1l,.,n}, i #7.

Proof. Let IL; be a minimum insertion list for H[S;, Si11, Sit2] and IL; be
a minimum insertion list for H[S;, Sjt+1, Sj+2]. If the intersection graph of
HI[S;, Sit1, Site] and the intersection graph of H[S;, Sj41,S;4+2] do not have
a node in common, then according to Theorem 5.10, IL;, IL; are pairwise
disjoint. If the intersection graph of H[S;, Sii1, Sii2] and the intersection
graph of H[S;, S;j+1,5;+2] have a node in common, then according Theorem
5.10, to gain feasibility by using insertions can only be achieved by inserting
vertices from Xi,i+17 Xi,i+2 or Xi+17i+2 to Xi,i+1,i+2 and from Xj,j—i—l; Xj,j+2 or
Xjt1,+2 to X 11 j+2. Therefore, IL;, IL; are pairwise disjoint. Otherwise,
Gint(H) has two triangles with two nodes in common. Contradicting the

structure of triangular cactus intersection graph. O

Theorem 14.9. Let H =<V, S > be a hypergraph, with S = {51, S2, 53, ..., S }
and a triangular cactus intersection graph.

Let n be the number of triangles in Gy, (H). Let IL; be a minimum feasible
insertion list for triangle Q;, © € {1,..,n}. IL = U;_, IL; is a minimum
feasible insertion list of H.

Proof. Let QQ; = H[S;, Sit1, Sit2]. Suppose Q; does not have a feasible solu-
tion, to gain feasibility by using insertions can only be achieved by inserting
vertices from X ; 11, Xiit2 or Xit1i12 to X;41,42. According to Lemma 14.8,
IL;, IL;, fori,j € {1,..,n}, i # j are pairwise disjoint. Since /L; is a min-
imum feasible insertion list for triangle Q;, Q; + I L;, for every i € {1,..,n},
has a feasible solution tree. According to Theorem 14.4, H + | J;_, IL; has
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a feasible solution tree. According to Lemma 14.8, mIL(H) <Y " | |IL;| =
SowymIL;. IL is a feasible removal list of H, therefore, a feasible insertion

list for Q;, for every i € {1,..,n}, |[IL| =Y ¢ [IL[Q:]| > >_;, mIL;. Hence,
Ui—, IL; is a minimum feasible insertion list. O

15 Cactus Intersection Graphs

In this section we consider a Cactus Intersection Graph with cycles with
length at least 4, see Figure 42. We describe the conditions for a feasible
CSTP solution and suggest a removal list.

Definition 15.1. Let H =<V, S8 > be a hypergraph and a cactus intersection
graph.

Gint(Si, ..., Sy) is a cycle leaf on S; if Gini(S;, ..., Sy) is connected to Giny(H \
HI[S;, ..., S:]) with only one edge, which touches S;, see Figure 42.

Theorem 15.2. Let H =< V,§ > be a hypergraph, with S = {S1, ..., Sm},
m >4 and a cactus intersection graph. If Gy (H) has at least one cycle with
length at least 4, H has no feasible solution tree by paths.

Proof. Since C'STP is a special case of C'STT and according to Theorem
2.1, H has no feasible solution tree by paths. O

Theorem 15.3. Let H =<V, S > be a hypergraph, with S ={S1, 52,53, ..., Sm }
and a cactus intersection graph. Let n be the number of cycles in G (H).
Let RL; be a feasible removal list for cycle C;, i € {1,..,n}. RL =J;_, RL;

is a feasible removal list of H.

Proof. Proof by induction on k, the number of nodes in G, (H).

If k£ <4, if Gy(H) is a tree, then RL = () and according to Theorem 4.2,
H has a feasible solution tree by paths. If G;,,(H) is a cycle, then there is
only one cycle C', such that RL; is a minimum feasible removal list for C
and according to the theorem assumption H \ RL has a feasible solution tree
by paths

Suppose the claim is correct for k& < m. We now prove it for £ = m. If
Gint(H) has a node s’ which is a leaf. Let C1, ..., C,, be the cycles in H. Since
s’ is a leaf, C1, ..., C, are also cycles in the intersection graph of H[S \ 5],
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then according to the induction hypothesis H[S\S’]\ RL has a feasible solu-

tion tree, and according to Theorem 14.2, H \ RL has a feasible solution tree.
Otherwise, G;,¢(H) contains a cycle leaf on s;, denote this cycle as H[S;, S, ..., Sy, Si]
and suppose this is cycle C),, see Figure 42.

Let U = S;N(Uj—; Sj), these vertices are in S;, but not in V(S\{S; U SiU ..U S:})-

According to the induction hypothesis, H[S \ {5, ..., S:}] \ Ui, RL; has a
feasible solution tree by paths. According to Theorem 14.3, H[S \ {5}, S} \
(U, S;)]\ U, RL; has a feasible solution tree by paths, denoted as T". Let v
be the last vertex in the path 7[S; \ U]. According to the theorem assump-
tion and Theorem 14.3, H[S;, S}, ..., S;| \ RL, has a feasible solution tree by
paths, then H[U, S, ..., S,| \ RL, also has a feasible solution tree by paths,
denoted as T”. According to Theorem 11.2, RL, represents the removal of
one of the edges of the cycle corresponding to HI[S;, S, ..., Sy, Si], so that,
H[S;, S, ..., Sy, Si] \ RL, has a solution which is a path. Let u be the last
vertex in this path, such that v € U. Add an edge (v,u) to connect 7" and
T". Let T be the new tree, see Figure 43. T is a feasible solution tree by
paths of H \ RL. Hence, H \ RL has a feasible solution tree by paths.

Si

SI Sr

Figure 42: A cycle leaf
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Figure 43: Theorem 15.3 solution tree

16 Algorithm For Solving Triangle Free Graph

In this section we consider a Triangle Free Intersection Graph, a graph which
does not contain any triangles. Hence, every cycle in this graph contains at
least 4 nodes. We describe the conditions for a feasible CSTP solution and
introduce an algorithm for finding a minimum feasible removal list.

Theorem 16.1. Let H =< V|8 > be a hypergraph, with S = {Si,..., S}
and a triangle free intersection graph. If Gy (H) has at least one cycle, H
has no feasible solution tree by paths.

Proof. Since Gii(H) is a triangle free intersection graph then at least one
cycle contains at least 4 nodes. Since C'STP is a special case of C'STT
according to Theorem 2.1, H has no feasible solution tree by paths. O]

Definition 16.2. A mazimum spanning tree (M,ST) a spanning tree
whose weight (the sum of weights of its edges) is maximum.

Theorem 16.3. Let H =< V| S > be a hypergraph, with S = {Si, ..., Sm}
and a triangle free intersection graph. Let S;,S;, Sk be clusters in S, for
every i, j, k € {1,....,m} | X; ;x| = 0.

Proof. Suppose by contradiction that, for ,j, k € {1,...,m}, |X; ;x| > 0. In
Gint(H) nodes s;,s;,s; form a triangle shape, in contradiction to Gyn:(H)
being a triangle free intersection graph. Furthermore, every cluster can have
at most one intersection with another cluster in H. O]
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Algorithm 3: TrianglesFreeMinRemovalList
Input : Triangle free intersection graph
Output: Minimum removal list for triangle free intersection graph
CRL =[];
Set w; ; = | X; ;| to be the weight of edge (s;, s;), for
(si,85) € Gine(H);
Let G, be G (H) with weights;
Let T},.: be a maximum spanning tree of G;
Let By, = {(s},,s}), -, (8,,5i,)} be the set of edges which are in

G and not in 1,443
Let CRL = UJ5_,(S;. N SL, S)
return CRL;

Theorem 16.4. Let H =< V.S > be a hypergraph, with S = {S1,..., S}
and a triangle free intersection graph. Algorithm TrianglesFree MinRemouval-
List returns a feasible removal list for H.

Proof. According to the algorithm, the removal of CRL corresponds to the
removal of all the edges in E,,, from G,,, thus changing the intersection graph
into a tree. Therefore, the intersection graph of H\ C'RL is a tree, according
to Lemma 4.2, it has a feasible solution tree by paths. O

Theorem 16.5. Let H =< V|8 > be a hypergraph, with S = {Si, ..., Sm}
and a triangle free intersection graph. Algorithm TrianglesFreeMinRemoval-
List returns a minimum feasible remowal list for H.

Proof. 1f RL is a feasible removal list, then G;,,,(H \ RL) contains no cycles.
Otherwise, if G;,,:(H \ RL) contains a cycle with at least 4 nodes then accord-
ing to Theorem 16.1, H does not have a feasible solution tree. According
to Theorem 11.4, any feasible removal list removes at least one edge from
each cycle, so that G;,(H \ RL) will be cycles free. In addition, if RL is a
minimum feasible removal list, G;,;(H \ RL) is a connected graph. Other-
wise, the minimum feasible removal list would have removed one edge less,
in contradiction to RL being a minimum feasible removal list. Therefore,
if RL is a minimum feasible removal list then G;,.(H \ RL) is a tree, by
removing edges from the intersection graph. Finding the set of edges with
minimum weight, whose removal from the intersection graph creates a tree,
is equivalent to finding a maximum spanning tree. According to Theorem
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16.4, CRL is a feasible removal list and represents the removals made to gain
a maximum spanning tree. Therefore, C RL is a minimum feasible removal
list for H. O

17 Summary and Further Research

Given a hypergraph, the research considers and investigates intersection
graph of specific shapes, for each shape we describe the conditions for feasibil-
ity regarding a CSTP solution. When there is no feasible solution we suggest
a minimum feasible removal list and a minimum feasible insertion list. The
research starts by looking at intersection graphs with triangular base shapes,
such as a triangular, diamond, butterfly, windmill, vertex connected triangu-
lar chain and an edge connected triangular chain. The research deals with
intersection graphs with special characteristics, where it is easy to show that
there is no feasible solution for the given hypergraph. The first intersection
graph is a single chordless cycle, followed by an intersection graph with two
chordless cycles connected by separating edge or a separating path of size
three. A significant part of the research focus on intersection graph which
is a triangular cactus tree. We describe the conditions for a feasibility and
suggest a minimum removal list or a minimum insertion list. When the in-
tersection graph is a cactus tree, we suggest a minimum removal list. We
also provide an algorithm that finds a minimum feasible removal list for a
triangular free intersection graph.

We would like to continue our research and investigate more complex
structures of intersection graphs, for example a 4-clique. Find conditions
for feasibility and suggest a minimum feasible removal list and a minimum
feasible insertion list.
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