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Introduction 
HP SmartStream Designer is an Adobe InDesign and Illustrator plugin that let you create 

sophisticated, custom jobs through a simple variable data tool optimized for HP Indigo digital 

presses. It includes exclusive features like HP Collage and HP Mosaic that let you create virtually 

unlimited design variations. 

HP Mosaic let you create automatic designs based on core patterns. It automatically generates a 

potentially unlimited number of unique graphic designs based on a fixed number of base patterns 

(also called seeds). Those seeds are the heart of the process. HP Mosaic technology uses an 

algorithm to create designs from those patterns. 

As mentioned, the heart of HP Mosaic is one or few base patterns which are vector based graphics 

(SVG or PDF format). The graphics are varied by rotation, scaling and color change to always create 

new patterns. The user can also configure the algorithm with commands and choose which colors 

should be retained or exchanged to the cropping area. With that, potentially millions of variations 

become unique. To achieve the best results, the base patterns should be as complex and colorful as 

possible. The more complex the basic patterns are, the results will be better and less similar to each 

other. 

Mosaic algorithm flow - 
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Here are some examples of HP Mosaic campaigns: 
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Problem description 
The purpose of this project is to help designers create those Mosaic seeds, which are unique and 

complex base patterns designs fitted to HP Mosaic requirements. The goal is to use machine learning 

to generate base patterns to feed the Mosaic algorithm with. The generated base patterns should be 

complex vector patterns in SVG or PDF format, based on a dataset of other seeds and user input.  

 

Today, in order to use the HP Mosaic algorithm, designers have to create their own base patterns or 

search for the right seeds from various stock photo libraries that fits mosaic design requirements – 

complex graphics in vector format that fits to the specific campaign/brand.  

 

The challenges of the designers today are:  

1) Time consuming - takes a lot of time to create or find the right base patterns  
2) Non-exclusive – the same base patterns in stock photo libraries are used by many users. Brands 

of designers usually worry that someone else is using the same designs! 
3) Weak design outcome - inexperience designers may not know how to create or choose the ‘right’ 

base patterns that fit the Mosaic requirements and result into weak mosaic designs. 
4) Costly to be unique: in order to have unique patterns, designers must create the pattern from 

scratch / edit from stock graphics (take time & high cost) 
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The solution 
Using generative architecture of machine learning and creating new mosaic seeds based on a 

dataset of existing seeds that fit the requirements. 

There are few architectures that can generate images using unsupervised learning. Auto Encoders 

and Generative adversarial networks are two of the best of them. 

In this project we will use Generative adversarial networks (GAN in short) for the task. 

Generative adversarial networks  
What is GAN and how can it help to achieve the goal? 

The Goal of a Generative adversarial network is to model what a given dataset looks like (i.e., density 

estimation), and to be able to generate new examples that “fit” the model. For example, given a 

dataset of images of cats, the goal is to be able to generate new images of “artificial” cats.  

Generative adversarial networks achieve their goal by having two networks that train and compete 

against each other, resulting in mutual improvisation. The generator misleads the discriminator 

by creating compelling fake inputs and tries to fool the discriminator into thinking of these as real 

inputs. The discriminator tells if an input is real or fake. 

 The GAN architecture has two components: 

1. Generator - The generator learns to generate plausible data. The generated instances 

become negative training examples for the discriminator. 

2. Discriminator - The discriminator learns to distinguish the generator's fake data from real 

data. The discriminator penalizes the generator for producing implausible results.  

 

 

 

 

General GAN architecture: 
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There are 3 major steps in the training process of a GAN: 

1. Using the generator to create fake inputs based on random noise 

2. Training the discriminator with both real and fake inputs (either simultaneously by 
concatenating real and fake inputs, or one after the other, the latter being preferred).  

3. Train the whole model: the model is built with the discriminator combined with the 
generator. 

An important point to note is that the discriminator’s weights are frozen during the last step.  

The reason for combining both networks is that there is no feedback on the generator’s outputs.  The 

ONLY guide is if the discriminator accepts the generator’s output. 

The two models compete in a two-player game, where simultaneous improvements are made to 

both generator and discriminator models that compete. 

We typically seek convergence of a model on a training dataset observed as the minimization of the 
chosen loss function on the training dataset. In a GAN, convergence signals the end of the two-

player game. Instead, equilibrium between generator and discriminator loss is sought.  

The minimax objective function 

Minimax GAN loss refers to the minimax simultaneous optimization of the discriminator and 

generator models. 

Minimax refers to an optimization strategy in two-player turn-based games for minimizing the loss 

or cost for the worst case of the other player. 

For the GAN, the generator and discriminator are the two players and take turns involving updates 

to their model weights. The min and max refer to the minimization of the generator loss and the 

maximization of the discriminator’s loss. 

The minmax equation between the discriminator and the generator -  

 

As stated above, the discriminator seeks to maximize the average of the log probability of real 

images and the log of the inverse probability for fake images. 

discriminator: maximize log D(x) + log(1 – D(G(z))) 
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The generator seeks to minimize the log of the inverse probability predicted by the discriminator for 

fake images. This has the effect of encouraging the generator to generate samples that have a low 

probability of being fake. 

The goal of the minmax game is to find the Nash-equilibria, a state in which no player can improve 

its individual gain by choosing a different strategy. According to this definition, a Nash equilibrium 

(G∗, D∗) for the GAN minimax problem must satisfy the following for every  

G ∈ G and D ∈ D: V (G ∗, D) ≤ V (G ∗, D∗) ≤ V (G, D∗). 

 

GAN common problems 
GAN has several common failure modes. Although none of these problems have been 

completely resolved, I will mention few attempts to deal with them. 

• Vanishing Gradients 

Research has suggested that if your discriminator is too good, then generator training can 

fail due to vanishing gradients. In effect, an optimal discriminator doesn't provide enough 

information for the generator to make progress. 

Attempts to handle the vanishing gradients 

o Using the Wasserstein loss function: The Wasserstein loss is designed to prevent 

vanishing gradients even when you train the discriminator to optimality. 

o Modified minimax loss: The original GAN paper proposed a modification to minimax 

loss to deal with vanishing gradients. 

• Mode Collapse 

Usually, you want your GAN to produce a wide variety of outputs. You want for example, a 

different face for every random input to your face generator. 

However, if a generator produces an especially plausible output, the generator may learn to 

produce only that output. In fact, the generator is always trying to find the one output that 

seems most plausible to the discriminator. 

If the generator starts producing the same output (or a small set of outputs) over and over 

again, the discriminator's best strategy is to learn to always reject that output. But if the 

next generation of discriminator gets stuck in a local minimum and doesn't find the best 

strategy, then it's too easy for the next generator iteration to find the most plausible output 

for the current discriminator. 

Each iteration of generator over-optimizes for a particular discriminator, and the 

discriminator never manages to learn its way out of the trap. As a result, the generators 

rotate through a small set of output types. This form of GAN failure is called mode collapse. 

The following method attempts to force the generator to expand its scope while preventing 

it from optimizing for a single fixed discriminator: 

o Wasserstein loss: The Wasserstein loss alleviates mode collapse by letting you train 

the discriminator to optimality without worrying about vanishing gradients. If the 

discriminator doesn't get stuck in local minima, it learns to reject the outputs that 

the generator stabilizes on. So the generator has to try something new. 
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o Unrolled GANs: Unrolled GANs use a generator loss function that incorporates not 

only the current discriminator's classifications, but also the outputs of future 

discriminator versions. So the generator can't over-optimize for a single 

discriminator. 

• Failure to Converge 

Because a GAN contains two separately trained networks, convergence is frequently hard to 

identify. 

Researchers are trying to use various forms of regularization to improve GAN convergence, 

including: 

Attempts to handle the failure to converge 

o Adding noise to discriminator inputs: See, for example, Toward Principled Methods 

for Training Generative Adversarial Networks. 

o Penalizing discriminator weights: See, for example, Stabilizing Training of Generative 

Adversarial Networks through Regularization. 

The dataset 
For training the GAN properly and getting a variety of unique designs, we had to use as large a 

dataset as possible for learning stability. I’ve managed to collect 400 mosaic seeds in vector format 

that fits the HP Mosaic algorithm requirements. 400 samples are a very small dataset for training a 

GAN and achieving suitable results. In order to increase the dataset size I used data argumentation. 

Data augmentation is often performed on the training data to address the issue by position 

augmentation techniques such as scaling, cropping, flipping, padding, rotation, translation, affine 

transformation, and color augmentation techniques such as brightness, contrast, saturation.  

For the augmentation I used color shuffling of the samples PDF spot colors, combined multiple 

samples together and scaled some samples. I wrote a script that uses those tools and augmented 

the 400 images dataset into 4000 images.  

Samples of the dataset of combined samples with color shuffle: 
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After the augmentation I converted the dataset of vectors to raster images with RGB channels to fit 

to the GAN networks. 

Samples from the dataset: 

 

 

GAN Architectures 
There are many GAN implementations that attempt to remedy the problems mentioned above.  

for image generation task we will use deep convolutional networks for both the generator and the 

discriminator. 

I’ve tried the most basic architecture for image generation and the most advanced one which are 

DCGAN and StyleGAN. 

DCGAN 
DCGAN is using deep convolutional neural networks for both the generator and discriminator 

models. It also contains guidelines for the models and training that result in the stable training of a 

generator model. It’s important because it suggested the constraints on the model required to 

effectively develop high-quality generator models in practice. This architecture, in turn, provided the 

basis for the rapid development of many GAN extensions and applications. 

DCGAN uses a couple of guidelines, in particular: 

• Replacing any pooling layers with strided convolutions (discriminator) and fractional-strided 

convolutions (generator). 

• Using batchnorm in both the generator and the discriminator. 

• Removing fully connected hidden layers for deeper architectures. 

• Using ReLU activation in generator for all layers except for the output, which uses tanh. 

• Using LeakyReLU activation in the discriminator for all layers. 
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The generator: 
The generator consists of convolution transpose layers followed by batch normalization and a leaky 

ReLU activation function for up sampling. We’ll use a strides parameter in the convolution layer. This 

is done to avoid unstable training. Leaky ReLUs are one attempt to fix the “dying ReLU” problem. 

Instead of the function being zero when x < 0, a leaky ReLU will instead have a small negative slope 

(of 0.01, or so). 

A 100-dimensional uniform distribution Z is projected to a small spatial extent convolutional 

representation with many feature maps, A series of four fractionally-strided convolutions converts 

this high-level representation into a 64X64 pixel image.   

 

 

The discriminator:  
The discriminator also consists of convolution layers where strides are used for doing the 

downsampling and batch normalization for stability. 

 

 

 

 

http://cs231n.github.io/neural-networks-1/
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Training 
The images were scaled to the size of the desired output (the number of output neurons of the 

generator and input number of the discriminator), then fed into the Discriminator Network as the 

“real” images. A set of 100 random numbers are chosen and fed into the Generator Network to 

create the “fake” images. The job of the Discriminator Network is to determine if the input is real or 

fake.  

I fed the dataset into the DCGAN network with its default settings and ran it for 10000 epochs of 128 

batches using “Tesla P100-PCIE-16GB” GPU.   

This diagram shows the flow through the system 

 

After the training were ended, the generator network output the following results: 
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We can see that the generator model learned some of the patterns and colors from the dataset, but 

the outputs are very noisy and blurry, also the patterns are repeated which indicates that training 

encountered with mode collapse. I ran the learning process multiple times with dataset changes and 

different number of batches and epochs, but the result didn’t improve much. In general, the DCGAN 

results were bad comparing to the real images. 

I’ve tried to improve the results by playing with the configurations and the architecture of DCGAN 

hopefully to stabilize the training process and avoid the mode collapse and hopefully get better 

results.  

Most of the experiments was to play with the architecture setting which are the convolutional 

stride, padding, layers size values and the number of the layers. All the experiments results ended 

with worse results than the original DCGAN configurations. The training process was unstable mostly 

because of the relatively small dataset and the large variety of uniqueness images.  

For each experiment I ran the training process for 10000 epochs with different batches sizes (32, 64, 

128) which took approximately 24 hours each. 

Here is one example of experiment result -  

 

In this test I added 1 layer to both the generator and the discriminator and edited the architecture to 

output image size of 128X128. (with stride size of 2X2 and padding size of 1) 

We can see that the results here were much worse than the original DCGAN architecture. The larger 

the output images are, the training process became less stable. 
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We can see how unstable the learning was at the following graph: 

 

 

StyleGAN 
Many improvements to the GAN architecture have been achieved through enhancements to the 

discriminator model. These changes are motivated by the idea that a better discriminator model will, 

in turn, lead to the generation of more realistic synthetic images. 

As such, the generator has been somewhat neglected and remains a black box. For example, the 

source of randomness used in the generation of synthetic images is not well understood, including 

both the amount of randomness in the sampled points and the structure of the latent space. 

The Style Generative Adversarial Network, or StyleGAN for short, is an extension to the GAN 

architecture that proposes large changes to the generator model, including the use of a mapping 

network to map points in latent space to an intermediate latent space, the use of the intermediate 

latent space to control style at each point in the generator model, and the introduction to noise as a 

source of variation at each point in the generator model. 

The StyleGAN is an extension of the progressive growing GAN that is an approach for training 

generator models capable of synthesizing very large high-quality images via the incremental 

expansion of both discriminator and generator models from small to large images during the training 

process. 

In addition to the incremental growing of the models during training, the style GAN changes the 

architecture of the generator significantly. 

The StyleGAN generator no longer takes a point from the latent space as input. instead, there are 

two new sources of randomness used to generate a synthetic image: a standalone mapping network 

and noise layers. 

The output from the mapping network is a vector that defines the styles that is integrated at each 

point in the generator model via a new layer called adaptive instance normalization. The use of this 

style vector gives control over the style of the generated image. 
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Stochastic variation is introduced through noise added at each point in the generator model. The 

noise is added to entire feature maps that allow the model to interpret the style in a fine-grained, 

per-pixel manner. 

This per-block incorporation of style vector and noise allows each block to localize both the 

interpretation of style and the stochastic variation to a given level of detail.  

The StyleGAN is described as a progressive growing GAN architecture with five modifications, each 

of which was added and evaluated incrementally in an ablative study. 

The incremental list of changes to the generator are: 

• Baseline Progressive GAN. 

• Addition of tuning and bilinear upsampling. 

• Addition of mapping network and AdaIN (styles). 

• Removal of latent vector input to generator. 

• Addition of noise to each block. 

• Addition Mixing regularization. 

The image below summarizes the StyleGAN generator architecture. 
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1. Baseline Progressive GAN 

The StyleGAN generator and discriminator models are trained using the progressive growing 

GAN training method. 

This means that both models start with small images, in this case, 4×4 images. The models 

are fit until stable, then both discriminator and generator are expanded to double the width 

and height (quadruple the area), e.g. 8×8. 

A new block is added to each model to support the larger image size, which is faded in 

slowly over training. Once faded-in, the models are again trained until reasonably stable and 

the process is repeated with ever-larger image sizes until the desired target image size is 

met, such as 1024×1024. 

2. Bilinear Sampling 

The progressive growing GAN uses nearest neighbor layers for upsampling instead of 

transpose convolutional layers that are common in other generator models. 

The first point of deviation in the StyleGAN is that bilinear upsampling layers are unused 

instead of nearest neighbor. 

3. Mapping Network and AdaIN 

Next, a standalone mapping network is used that takes a randomly sampled point from the 

latent space as input and generates a style vector. 

The mapping network is comprised of eight fully connected layers, e.g. it is a standard deep 

neural network. 

The style vector is then transformed and incorporated into each block of the generator 

model after the convolutional layers via an operation called adaptive instance normalization 

or AdaIN. 

The AdaIN layers involve first standardizing the output of feature map to a standard 

Gaussian, then adding the style vector as a bias term. 

 

The addition of the new mapping network to the architecture also results in the renaming of 

the generator model to a “synthesis network.” 

 

4. Removal of Latent Point Input 

The next change involves modifying the generator model so that it no longer takes a point 

from the latent space as input. 

Instead, the model has a constant 4x4x512 constant value input in order to start the image 

synthesis process. 
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5. Addition of Noise 

The output of each convolutional layer in the synthesis network is a block of activation 

maps. 

Gaussian noise is added to each of these activation maps prior to the AdaIN operations. A 

different sample of noise is generated for each block and is interpreted using per-layer 

scaling factors.. 

6. Mixing regularization 

Mixing regularization involves first generating two style vectors from the mapping network.  

A split point in the synthesis network is chosen and all AdaIN operations prior to the split 

point use the first style vector and all AdaIN operations after the split point get the second 

style vector. 

This encourages the layers and blocks to localize the style to specific parts of the model and 

corresponding level of detail in the generated image. 

The use of different style vectors at different points of the synthesis network gives control 

over the styles of the resulting image at different levels of detail.  

 

Testing process 
The images are fed into the Discriminator Network as the “real” images. A set of 512 random 

numbers are chosen and fed into the Style Mapper and Generator Networks to create the “fake” 

images. The result is fed back into the three networks to train them. When the training is done, I 

post-process the output of the Generator Network to get the final images.  

After training the networks for 128 epochs with batches of 64 we have got the following results - 
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We can see that the images that generated with StyleGAN architecture are still quite far from the 

training set images but they are less noisy and less repeated than the DCGAN output images that ran 

with the same settings of epochs and batches. In general, the generated images are still far from 

being usable. 

 

StyleGAN with Adaptive Discriminator Augmentation  
One of the major improvements in StyleGAN ADA is dynamically changing the amount of image 

augmentation during training. 

Image augmentation has been around for a while. The concept is fairly simple. If you don’t have 

enough images to train a GAN, it can lead to poor performance, like overfitting, underfitting, or the 

dreaded “model collapse”, where the generator repeats the same output image. A remedy for these 

problems is image augmentation, where you can apply transformations like rotation, scaling, 

translation, color adjustments, etc., to create additional images for the training set. 

A downside to image augmentation is that the transformations can “leak” into the generated images 

which may not be desirable. For example, if you are generating human faces, you could use 90° 

rotation to augment the training data, but you may not want the generated faces to be rotated. 

Nvidia found that augmentations can be designed to be non-leaking on the condition that they are 

skipped with a non-zero probability. So, if most of the images being fed into the discriminator are 

not rotated for augmentation, the generator will learn to not create images that are rotated 

“…the training implicitly undoes the corruptions and finds the correct distribution, 
as long as the corruption process is represented by an invertible transformation of 

probability distributions over the data space. We call such augmentation operators 

non-leaking. — Tero Karras, et al.” 

The new version of StyleGAN has a feature called Adaptive Discriminator Augmentation (ADA) that 

performs non-leaking image augmentations during training. A new hyperparameter, p, in the range 

of 0 to 1, determines how much and how often augmentations are to be applied to both the real 

images and the fake images during training. 

Here is a sample of augmentations with different values for p. 

 

The value p starts at 0 when training begins, and then increases or decreases if the system senses 

that there is overfitting or underfitting during training. 
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The heuristic used in the system is based on the sign (positive or negative) of the output of the 

discriminator during the processing of a batch of generated images. If there are more positive 

output values than negative, then the trend is towards real images, which is an indication of 

overfitting. If there are more negative values than positive then the trend is towards fake images, 

which is an indication of underfitting. The value p is adjusted up or down accordingly after the batch 

— up for overfitting and down for underfitting. 

A target value for p can be set, i.e. 0.7, so there is always a non-zero probability that the 

augmentations can be skipped, which avoids leaking. 

Training StyleGAN with Adaptive Discriminator Augmentation 

After training the networks with the same settings as before (128 epochs with batches of 64), the 

generator output the following images-  

 

Those generated images are far better than the images generated without the augmentation and 

are already quite similar to our training dataset and can be use as Mosaic seeds after conversion to 

vectors. 

I wanted to go one step further and improve the quality and apply some styles from abstract 

artworks to the generated images for getting extra special results. For accomplish that I used 

technique called “transfer learning”. 

Transfer Learning 
It may not be intuitive, but it’s possible to improve the quality of the generated images by first 

training the GAN on a different, larger set of images, and then further train the model using the 

Mosaic seeds. This technique is called Transfer Learning. It was first described as a technique for 

training NNs in 1976. 

“Transfer Learning is technique that uses a pre-trained neural network trained for 

Task 1 for achieving shorter training time in learning Task 2. — Stevo Bozinovski” 

I found a pre-trained GAN network on a public domain that had been trained with tens of thousands 

of artistic photos from Wikiart, and I used it as my training starting point.  
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Here are some of the art works used for the pretrained network: 

 

This pretrained network not only improved the quality of the generated images but also added 

artistic abstract touch from the wikiart dataset. I ran again the training process with the same 

configurations and number of epochs as before and got the following results -  

 

The results with this technique and the pretrained wikiart network as our starting point were 

amazing! The generated images were much better, diverse and beautiful from the original dataset 

thanks to the weighs of the wikiart network. 
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Here are some large samples – 
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Mosaic generation with the new generated seeds 
 

HP Mosaic algorithm requires the base patterns to be a vector format for not losing quality when 

transposing and scaling. The conversion of the generated raster images to vector format is done by 

Adobe Illustrator path tracing algorithm. 

The following image is HP Mosaic plugin for Adobe Illustrator, I selected the first sample seed from 

above and configured free rotation, random position and scaling from 200%-500%.  
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The output of the algorithm with custom template: 
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Another example of the same template with different seeds: 
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Changing Mosaic seeds on the flight 

The processing of the templates can be very heavy depends on the complexity of the design and 

number of channels, especially when creating millions of variations. For handle the heavy processing 

we created a cloud platform for processing jobs on demand. I added a gallery of the generated seeds 

as a new feature for the application. This feature is available only if the template contains Mosaic 

channel. With that, the user can browse the gallery and change the Mosaic base pattens before 

processing, then preview the outcome and process the output. 
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The results after selecting few seeds from the gallery.  
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Projecting 
The StyleGAN generator model is basically a network of weights, we can try to represent an input 

image with those weights (projecting an input image into the latent space of the model). We can use 

this projection to combine the style of an input image with a given seed by learning the input image. 

For getting only the style of the input image and not trying to represent the actual input image, we 

need to stop the learning process with half of the loss that we start with.  

For example, if we select a seed and learn some company logo, we will get the selected seed with 

the style of the logo 

 

 

 

 

 


