

Entity extraction for comparison

sentences from reviews over the

restaurants domain.

By: Sabina Shleizer 307523167

Advisor: Dr. Osnat Mokryn

2

Contents:

1. INTRODUCTION 4

2. BACKGROUND AND RELATED WORK 7

2.1 IDENTIFICATION OF COMPARATIVE SENTENCES 7

2.1.1 MINING COMPARATIVE SENTENCES: 7

2.1.2 MINING THE ORIENTATION OF COMPARATIVE SENTENCES: 13

2.2 TOOLS 15

2.2.1 TEXT CLASSIFICATION: 15

2.2.2 NAIVE BAYES (NB): 15

2.2.3 ROCCHIO: 16

2.2.4 K NEAREST NEIGHBORS (KNN): 17

2.2.5 SUPPORT VECTOR MACHINES (SVM): 18

2.2.6 CLASS SEQUENTIAL RULES (CSR): 18

2.2.7 PART-OF-SPEECH (POS): 21

2.2.8 SEMI-SUPERVISED ALGORITHM FOR SARCASM IDENTIFICATION (SASI): 23

2.2.9 PATTERN-BASED FEATURES: 23

3 DATA AND METHOD 26

3.1 DATA DESCRIPTION 26

3.1.1 TRAINING-SET CONSTRUCTION: 26

3.1.2 LABELING: 27

3.1.3 DATA SUMMARY: 27

3.2 METHOD 27

3.2.1 METHOD DESCRIPTION: 27

3.2.2 ALGORITHMS: 28

3.2.2.1 Pattern-based Algorithm 28

3.2.2.1.1 Rational: 28

3.2.2.1.2 Pattern extraction: 29

3.2.2.1.3 Classification: 30

3.2.2.1.4 Distance Measuring: 30

3.2.2.1.5 K selection: 32

3.2.2.2 Sequence Feature Algorithm 32

3.2.2.2.1 Rational: 32

3.2.2.2.2 POS tags strategy: 33

3.2.2.2.3 Algorithm steps: 33

4 RESULTS 38

 3

4.1 PATTERN-BASED ALGORITHM RESULTS: 38

4.2 SEQUENCE-FEATURE ALGORITHM RESULTS: 39

5 CONCLUSION 43

6 REFERENCES 44

7 APPENDIX 46

7.1 DATA CREATION 46

7.2 PATTERN-BASED ALGORITHM 47

7.3 SEQUENCE FEATURE ALGORITHM 50

7.4 EXCEL HELP LIBRARY 55

7.5 SQL HELP LIBRARY 59

7.6 STOP WORDS LIST 61

 4

1. Introduction

In recent years, technological advances have led to an increase of consumer-review websites,

such as Yelp1, where service-quality experiences can be shared. These reviews provide the

consumers with information about previous consumers' experience. The consumer can then get

information about a product or a service quality observed after its consumption. With a click of a

button one can now gather information from multiple consumers regarding a variety of products,

from restaurants to movies to physicians. However, consumer-review websites do not provide

consumers with sufficient tools for evaluating opinions from reviews, so that many of them find

it inconvenient to browse through a large number of reviews (Dai, Jin, Lee, & Luca, 2012).

Many customers are facing a situation in which they have to decide upon one restaurant over the

other. In order to make better decisions, they can attempt to compare several reviews of

restaurants. However, it is clear that as long as customers have an access to a huge amount of

reviews, reading each restaurant's reviews, for the purpose of getting a better point of view, is not

an ideal solution. In addition, investigating large amounts of data is a time-consuming job, which

may cause many helpful or otherwise important reviews to be left unnoticed due to lack of time.

Therefore, a system that can automatically provide a summary of comparisons between two (or

more) restaurants, based on their reviews, would be very useful in many areas such as marketing

(Yang & Ko, 2011).

Comparison is also one of the most convincing ways of evaluation (Xu et al., 2011). Extracting

comparative sentences from a text can be useful for business decisions. For example, if the

owner of a new restaurant would like to know its consumers' opinions on the restaurant, and how

they are compared with other restaurants' reviews within the area or the genre. Much of that

information is now readily available on the Web in the form of customer reviews, forum

discussions, blogs, etc. Extracting such information can significantly help businesses in their

marketing and product benchmarking efforts.

1 http://www.yelp.com

 5

Much research in the information extraction field has been done in the recent years (Davidov &

Rappoport, 2006; Davidov, Tsur, & Rappoport, 2010; Etzioni et al., 2005; Tsur, Rappoport, &

Davidov, 2010). This research has a huge influence on business processes. Automatic

identification of consumers' opinions from reviews can help identifying strengths and

weaknesses of a business, as well as taking marketing decisions. For example, Tsur et al., (2010)

examine the issue of sarcasm within online reviews. In their research, they suggest an algorithm

that can recognize sarcastic sentences in online product reviews automatically.

In this paper, we focus on obtaining and extracting comparisons from social media sites in the

restaurants domain. Extracting this information is not only important for the business owners, but

also for potential customers, as it enables customers to make better decisions (Jindal & Liu,

2006). Specifically, this paper deals with finding and extracting comparative sentences between

items from online reviews. The restaurant domain was chosen for this paper as it suggests an

interesting challenge in particular as restaurant names vary in a free manner style. Restaurants

might be named by their location, after the owner, or even after a favorite dish. Unlike the

product domain, in which a product's name is a unique identifier when referenced in a review,

the restaurant domain introduces an additional challenge in this respect. Consider, for example, a

restaurant named "Tika Masala". Clearly, when diners at other Indian restaurants refer to "Tika

Masala", they might refer a favorite dish rather than another restaurant. Similarly is the case

with restaurants named "So", or "Lemon", which are commonly used words in different contexts.

In linguistics, comparatives are based on specialized morphemes more/most, -er/-est, less/least

and as, for the purpose of establishing orderings of superiority, inferiority and equality.

Alternatively, than, as, are used for making a ‘standard’ against which an entity is compared.

(Jindal, Liu, & Bing, 2006). To extract comparative sentences from restaurant review we present

here two methods that were tailored for the restaurant domain The first method is based on SASI

algorithm for semi-supervised recognition of sarcastic sentences in product reviews (Tsur et al.,

2010). We create a two-phase algorithm. The first phase consists of a semi-supervised pattern

acquisition module, based on SASI, for identifying patterns of sentences that compare two or

more restaurants. The second phase involves employing a module for comparative patterns

classification on the sentences found on the first phase The second method, which outperforms

 6

the first, is based on an algorithm for identifying comparative sentences in text documents

(Jindal & Liu, 2006). In this algorithm we replace all the words in the sentence with the part-of-

speech tag and then, by applying class-sequential rules and by using various classification

methods, we extract comparative sentences.

 7

2. Background and related work

2.1 Identification of comparative sentences

2.1.1 Mining comparative sentences:

Although the problem of identifying a sentiment or an opinion is well studied, only a few works

focused on the identification of comparative sentences, discussed hereafter. Jindal & Liu (2006)

were the first to define the text-mining problem of comparative sentence mining (CSM).

According to them, a comparative sentence expresses an ordering relation between two sets of

entities, with respect to some common features. For example, the comparative sentence

“Canon’s optics are better than those of Sony and Nikon” expresses the comparative relation:

(better, {optics}, {Canon}, {Sony, Nikon}).

Given a set of evaluative texts on the Web, e.g., reviews, forum postings, and news articles, the

task of comparative sentence mining is to:

1. Identify comparative sentences from texts (explained below).

2. Extract comparative relations from the identified comparative sentences, so that a new type of

rules ("LSR label sequential rules") is proposed for extraction. These rules are based on the

following assumptions: a) there is only one relation in a sentence. In practice, they show that in

their dataset this assumption is violated only in a very small number of cases; b) Entities and

features are nouns (include nouns, plural nouns and proper nouns) and pronouns. This

assumption showed to cover the majority of the cases in their dataset.

Jindal & Liu propose an approach based on pattern discovery and supervised learning to identify

comparative sentences. They created an algorithm that finds comparative sentences in 4 stages:

1) Using a keyword strategy to find the comparing sentences.

2) Utilizing POS tags in the sentence in order to convert the sentence into a pattern.

3) Using sequential pattern-mining (SPM) algorithm to find all sequential patterns that

satisfy a selected minimum support and confidence.

4) Applying the NB and SVM classifier to automatically classify each sentence into one of

the two classes: “comparative” and “non-comparative” (based on the filtered data).

 8

On their work, Jindal et al., aimed to find keywords that cover almost all comparative sentences,

with a very high recall. First, they manually found a list of 30 words by going through a subset of

comparative sentences. Then, they used WordNet to find their synonyms. After a manual

pruning- process, a final list of 69 words was produced. However, since the non-gradable

comparative sentences did not necessarily use the specific keywords, they included 9 more words

and phrases such as "but", "whereas", "on the other hand", etc., which are sometimes used in

non-gradable comparisons. The words with POS tags of JJR, RBR, JJS and RBS were also good

indicators so they included words with this POS tags also. Altogether, they had 83 keywords and

key phrases which contained {JJR, RBR, JJS, RBS} ∪ {words such as favor, prefer, win, beat,

but, etc.} ∪ {phrases such as number one, up against, etc.}. Therefore, the researchers could find

most of the comparative sentences and their new problem was to remove the non-comparative

sentences from the comparative.

In the second stage of their algorithm, Jindal & Liu utilized POS tags in order to find patterns in

the dataset sentences. They assumed that Even though the contents of some sentences may vary,

their underlying language patterns can be the same. Using the raw words, such patterns were not

found. However, by Replacing each word with its POS tag (Part-of-speech tag), the pattern

became apparent. Thus, POS tags capture content-independent language patterns, which are

useful to this research, according to the following process:

1) Select the LSR rule with the highest confidence. Replace the matched elements in the

sentences that satisfy the rule with the labels ({ci}) in the rule.

2) Recalculate the confidence of each remaining rule based on the modified data from step 1.

3) Repeat step 1 and 2 until no rule is left with confidence higher than the minimum confidence

value (they used 90%).

The rules are then applied to match each comparative sentence in the test data to extract the

components of the relation.

To extract comparison sentences using key words, Jindal & Liu constructed a database in the

following way:

1. For each sentence that contains at least one keyword or key phrase, they use the words that are

within the radius of 3 of each keyword in the sentence as a sequence in their data. Their

 9

experiments demonstrated that the radius of 3 was optimum whereas the Radius of 4 or more

gave many spurious patterns that over-fit the data. Using too few words was found to give

insufficient information.

2. Each word is then replaced with its POS tag.

3. A class is attached to each sequence, according to whether the sentence is comparative or non-

comparative,

As the database was constructed, Jindal & Liu used the sequential pattern-mining (SPM)

algorithm to find all sequential patterns that satisfy a selected minimum support (frequency). A

sequential pattern is simply a sub-sequence that appears more frequently in the input sequences

than the minimum support threshold. Unlike classic sequential pattern-mining, which is

unsupervised, they mine sequential rules with fixed classes. A class-sequential rule (CSR) is a

rule with a sequential pattern on the left and a class label on the right. They generated class-

sequential rules which meet the minimum confidence threshold of 60%. For the minimum

support threshold, they proposed the multiple minimum supports model, in which each word set

a minimum support based on the frequency that appears in the training data. This model enables

to find those rare patterns without generating too many over-fitting rules that harm the

classification process. To achieve the multiple minimum support effect, Jindal & Liu established

the parameter τ and set it to 0.1. The minimum support was changed according to the actual

frequency of the items in the data (for frequent items the minimum support was high and for rare

items the minimum support was low). The mining algorithm is presented in the following

pseudo-code:

1. Compute the frequencies of all the items in the training data

2. for each group of items W with the same frequency do

a. minsup = frequency(W) * τ;

b. *CSR(trainingData, W, minsup, minconf);

3. end_for

* The function CSR generates all the rules related to the items in W.

Once the rules were constructed, the researches added some manually compiled rules that were

more complex and hard to be generated by current pattern-mining techniques. For each

 10

sentence, they found all the rules that were satisfied by the sentence and ran an NB classification

on them. The algorithm indicated whether the sentence was comparative or non-comparative,

according to the Naive Bayesian classifier result. In conclusion, Jindal & Liu identified the

following two challenges:

1. Not all sentences considered as comparisons and having the POS tags JJR, RBR, JJS and RBS,

are indeed comparisons.

2. Some sentences are comparisons but do not use any indicative word.

While their method was suitable for the product domain, our results, as detailed in Section 4

show that their method failed to find the majority of comparative sentences in the restaurants

domain.

Yang & Ko (2009) proposed a method for automatically identifying Korean comparative

sentences from text documents. First, they built an algorithm that extracts comparison sentences

from a text document in three stages:

1) They defined a set of comparative keywords.

2) Using the keyword strategy, they extracted a set of comparative-sentence candidates.

3) Using MEM and NB classification methods, they eliminated non-comparative sentences

from the candidates.

Their next step was to construct a set of 177 manually extracted comparative keywords. They

defined comparative keyword (CK) as a word or a phrase or a long-distance-words sequence.

On the second stage, Yang & Ko divided all the sentences into four categories as follows:

S1 - comparative sentences containing a keyword.

S2 - comparative sentences not containing a keyword.

S3 - non-comparative sentences containing a keyword.

S4 - non-comparative sentences not containing a keyword.

Their goal was to find an effective method to extract S1 and S2 from all the other sentences.

However, extracting comparative sentences is not a simple nor an easy problem. It needs more

complicated and challenging processes than only searching out some keywords for extracting

comparative sentences.

 11

The main problem Yang & Ko identified on their research was that many comparative sentences

do not contain comparative words, while non-comparative sentences can contain comparative

words. However, as long as a comparative keyword is included in each sentence, the sentence is

considered likely to be a comparative sentence. Keyword searching process can therefore detect

most of comparative-sentence candidates (S1, S2 and S3) from original text documents. That is,

the recall is high but the precision is low, so there is a need to eliminate the incorrect sentences

(S3) from the candidate sentences. According to that, Yang & Ko's suggestion was to divide the

set of all comparative-sentence candidates into two subsets according to the precision of each

keyword, using 90% of the precision as a threshold value. The candidates in the first group,

which contained popular keywords, had the average precision of 97.44% and did not require any

additional process. The second group needed further processing, due to a low precision of

29.34%.

On the last stage of the algorithm, Yang & Ko used Maximum Entropy Method (MEM) and

Naïve Bayes (NB) classifiers to eliminate non-comparative sentences. For feature extraction

from each comparative sentence candidate, they used continuous word sequences within the

radius of 3 of each keyword in the sentence. After determining the radius, they replaced each

word with its POS tag. They added comparative or non-comparative class-tag to each sentence

and applied the MEM and NB on the created vectors, which enabled them to decide if

comparative sentence candidates are a comparative sentences.

Yang & Ko (2011) further expanded the research on Korean comparative sentences. They

focused mainly on two tasks:

1) Classifying comparative sentences into one non-comparative class and seven comparative

classes.

2) Mining comparative entities.

On the first stage of the algorithm, they classified the sentences into two groups: comparative

and non-comparative sentences, using the method described above (Yang & Ko, 2009).

The next step of their algorithm was to classify the comparative sentences into different

comparative types. They defined seven comparative types and employed transformation-based

learning (TBL) for comparative sentence classification. TBL is a method for adding

 12

classification to each token developed by Brill in 1995 (Bril 1995). The last step on their work

was to extract three kinds of comparative elements: SE (subject entity), OE (object entity) and

PR (comparative predicate).

Kennedy (2004) proposed a linguistic approach for identifying comparative sentences. He tried

to categorize different types of comparative sentences on the basis of syntax and semantics.

Syntax and semantics are terms used in relation to characteristics of language. Syntax is

concerned with the structure of language and it is a matter of the logical or grammatical form of

sentences, rather than what they refer to or mean. Semantics is concerned with the meaning of

words and sentences. In many languages, comparatives are based on specialized morphology and

syntax. English exemplifies this type of system: it uses the morphemes "more/-er", "less"and

"as", specifically for the purpose of establishing orderings of superiority, inferiority and equality,

respectively, and the morphemes "than" and "as" to make the ‘standard’ against which an object

is compared. In contrast to Kennedy's work, this paper studied the comparative sentences from

the technical side.

Park & Blake (2012) aimed to identify comparative sentences automatically from full text

scientific articles. In their work, they introduced 35 features that capture both semantic and

syntactic characteristics of a sentence. They used those features with three different classifiers:

Naïve Bayes, Support Vector Machines, and Bayesian Networks in order to predict comparison

sentences. The experiments were conducted on 122 full-text toxicology articles containing

14,157 sentences, of which 1,735 (12.25%) were comparisons. The experiments shown an F1

score of 71%, 69% and 74% on development set and 76%, 65% and 74% on a validation set for

NB, SVM and BN, respectively. The results Park & Blake received where not as good as the

result we found, and the results presented in Jindal & Liu (2006). Therefore, we do not preside

with nor compare to their method.

 13

2.1.2 Mining the orientation of comparative sentences:

Ganapathibhotla & Liu (2008) focus on mining opinions from comparative sentences, i.e., to

determine which entities in a comparison are preferred. Their observation is based upon the

notion that in comparative sentences there is usually a context-dependent comparative word,

which identifies the opinion's orientation (positive or negative). The entities being compared

often appear on the two sides of the comparative word and the basic idea is to convert the

opinion's adjectives/adverbs to their comparative forms. After the conversion, these words are

manually categorized into increasing and decreasing comparatives. Sentences with opinionated

words (e.g., “better”, and “worse”) are usually easy to handle. However, many comparative

words are not opinionated. Thus, they used reviews from review sites, which have separate Pros

and Cons (identified positive and negative opinions that were separated by reviewers while

writing). They identified comparative and entity features words in Pros and Cons sentences, and

converted the comparatives to their base forms. Then they applied a set of evaluation rules to

determine which of the entities is preferred. For example: If the comparative or superlative

comparative word has a positive orientation (e.g. “better”), Entity S1 (which appears before

comparative word in the sentence) is temporarily assigned as the preferred entity. Otherwise,

Entity S2 is assigned as the preferred entity.

Visualizations of product aspects were also considered in the context of mining the orientation of

comparative sentences. Xu, Liao, Li, & Song (2011) used the corpus of Amazon customer

reviews in order to suggest a graphical model to extract and visualize comparative relations

between products from customer reviews. The interdependencies among relations were taken

into consideration to help enterprises discover potential risks and further design new products

and marketing strategies. In contrast to this work, Xu et al., (2011) tried to build a map of

relations between all the products and did not focus on extracting comparative sentences

specifically. Additionally, their work, as well as the others mentioned above, focused on product

comparison and not on restaurant comparison.

Gamon et al., (2005) presents a prototype system code named "Pulse" for mining topics and

sentiment orientation jointly from free text customer feedback. Their work combines the two

dimensions of a free-form customer opinions classification: topic and sentiment (the content,

opinions characterization), and presents the results in an intuitive visualization. Both sentiment

 14

detection and topic detection in Pulse are performed at the sentence-level rather than at the

document level (sentence-level granularity of analysis allows the discovery of new information

even in those scenarios where an overall product rating is already provided at the document

level).

Pulse system was applied to a sample of a car reviews database, which contains 406,818

customer car reviews written over a four year period, with no editing beyond simple filtering for

profanity. Pulse first extracts a taxonomy of major categories (makes) and minor categories

(models) of cars by simply querying the car reviews database. Sentences are extracted from the

reviews of each make and model and are processed according to the two dimensions of

information that are shown in the final visualization stage: sentiment and topic. To train the

domain-specific sentiment classifier (a Naive Bayes classifier), Pulse requires that only a small

amount of data be annotated. A small random selection of sentences is labeled by hand as

expressing positive, other, or negative sentiment. This small labeled set of data is used with the

entirety of the unlabeled data to bootstrap a classifier.

The Sentence-clustering algorithm (a modified version of Nigam et al.'s algorithm) forms

clusters from the set of sentences that correspond to a leaf-node in the taxonomy (i.e. a specific

model of car). The prototype implements a simple keyword-based soft clustering algorithm with

TF-iDF weighting and phrase identification. The clusters are labeled with the most prominent

key terms. Once the sentences for a make and model of a car are assigned to clusters and receive

a sentiment score from the sentiment classifier, the visualization component displays the clusters

and the keyword labels that are produced for the sentences associated with that car. Their work is

different from our work as it focuses on mining opinions and not on comparative sentences.

In summary, this chapter discussed various methods for the identification of comparative

sentences. It clarified that studies considering comparative sentences from reviews over the

restaurants domain are yet to find. Also, when viewing the task of extracting comparisons

between the reviewed items only few related papers studied non-supervised extraction of

comparative sentences.

 15

2.2 Tools

2.2.1 Text classification:

Given a set of classes, we seek to determine which classes a given document belongs to. The

input of this problem is a description of document x ∈ X, where X is the document space; and a

fixed set of classes C = {c1, c2, … , cJ}. Using a learning method or a learning algorithm, we

then wish to learn a classifier or classification function γ that maps documents to classes:

γ:X→C.

The set of rules, or the decision criterion of the text classifier, is learned automatically from a

training data. The training-set requires a number of good examples for each class. This type of

learning is called "supervised learning", since a supervisor serves as a teacher directing the

learning process. The need for a manual classification is not eliminated because the training

documents come from a person who has labeled them (labeling refers to the process of

annotating each document with its class). We denote the supervised learning method by G and

write G(X)=γ. The learning method G takes the training-set X as input and returns the learned

classification function γ. Once we have learned γ, we can apply it to the test set (or test data), for

example, a new unlabeled document. This type of learning is analogous to a human learning

from past experiences to gain new knowledge in order to improve our ability to perform real-

world tasks (Blanken, de Vries, Blok, & Feng, 2007; Id, 2009).

2.2.2 Naive Bayes (NB):

The task of classification can be regarded as estimating the class probabilities given a test

example d. We then see which class cj is more probable. The class with the highest probability is

assigned to example d. Let A1, A2, …, A|A| be the set of attributes with discrete values in the

data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|. Given a test example d

with observed attribute values, the prediction is the class cj such that Pr(C=cj | A1=a1, ...,

A|A|=a|A|) is maximal. An assumption is that all attributes are conditionally independent given

the class C = cj.

Pr(C = cj) =
number of examples of class cj

total number of examples in the data set

 16

Pr(Ai = ai|C = cj) =
number of examples with Ai = ai class cj

total number of examples of class cj

Assign d to calss c = argmax
cj

Pr (C = cj)∏Pr (Ai = ai

|A|

i=1

|C = cj)

Most assumptions made by NB learning are violated in practice. For example, words in a

document are clearly not independent of each other. Despite such violations, researchers have

shown that NB learning produces very accurate models. NB can be applied to many different

learning problems and is unlikely to produce classifiers that fail catastrophically, but it has an

error rate of 20%. NB learning is also very efficient for it scans the training data only once to

estimate all the probabilities required for classification. NB is a good classifier if one has fairly

little data and intends to train a supervised classifier (Blanken et al., 2007; Id, 2009).

2.2.3 Rocchio:

Our task in the vector space classification is to find good boundaries to divide the vector space into

regions. A “good” classification means high classification accuracy on a test data that was not seen

during training. Centroid of a class is computed as a vector average or a center of mass from its class

members. The boundary between two classes in Rocchio classification is a set of points with an equal

distance from the two centroids. This set of points forms a line. Rocchio classification is simple and

efficient, but inaccurate if classes are not approximately spheres with similar radii. It ignores details that

are related to the distribution of points in a class and only uses distance from the centroid for

classification. The Rocchio classification also fails in the case of nonlinear classification problem when,

for example, one class is contained in another class (Blanken et al., 2007; Id, 2009).

Centroid calculation: μ⃗ (c) =
1

|Dc|
∑ v⃗ (d)d∈Dc

Dc is the set of documents in D whose class is c and v⃗ (d) is a normalized vector of D.

 17

The line that determines the boundaries between 2 classes: w⃗⃗⃗ Tx⃗ = b

w⃗⃗⃗ T is the M-dimensional normal vector and b is a constant.

The classification rule in Rocchio is to classify a point in accordance with the region it falls into.

Equivalently, we determine the centroid μ⃗ (c) that the point is closest to and then assign it to c.

Assign d to calss c = argmax
c′

cos(μ⃗ (c′), v⃗ (d))

2.2.4 K nearest neighbors (kNN):

kNN classification determines the decision boundary locally and assigns each document to the

majority class of its k closest neighbors, where k is a parameter. kNN is a "lazy" learning method

in a sense that no model is learned from the training data. Learning occurs only when a test

example needs is classified. kNN requires no explicit training and may use the unprocessed

training-set directly in classification. It is less efficient than other classification methods in

classifying documents. If the training set is large, then kNN can handle non-spherical and other

complex classes better than Rocchio. The parameter k in kNN is often chosen based on

experience or knowledge about the classification problem at hand. An alternative way of setting

the parameter is to select the k that gives best results on a held-out portion of the training set.

Other approach is to set K proportionally to the test set size as √(test set size)2
.

 score(c, d) = ∑ Ic(d
′) cos(v⃗ (d′), v⃗ (d))d′∈Sk(d)

 Sk(d) is the set of d’s k nearest neighbors

 Ic(d′) = 1 if d′ is in class c and 0 otherwise

 18

Weighing by similarities is often more accurate than simple voting. For example, if two classes

have the same number of neighbors in the top k, then the class with the more similar neighbors

wins.

Despite its simplicity, researchers have shown that the classification accuracy of kNN can be

quite strong, and in many cases as accurate as those elaborated methods. The kNN performs

well when we cope with a large amount of training data. kNN is also very flexible as it can work

with any arbitrarily shaped decision boundaries. However, kNN is slow at classification time.

Due to the fact that there is no model building, each test instance is compared with every training

example at the classification time, which can be quite time-consuming, especially when the

training-set d and the test-set are large (Blanken et al., 2007; Id, 2009).

2.2.5 Support vector machines (SVM):

SVM is another type of learning system, which has many desirable qualities that make it one of

the most popular algorithms. Not only it has a solid theoretical foundation, but it also performs

classification more accurately than most other algorithms. An SVM is a kind of large-margin

classifier. It is a vector space-based machine learning method where the goal is to find a decision

boundary between two classes that are maximally far from any point in the training data. The

SVM requires numeric data and builds only two-class classifiers, which are separable training

data sets with lots of possible linear separators. The SVM defines the criterion to be looking for a

decision surface that is maximally far away from any data point. Only a small part of the points

(the point around the decision surface) play part in determining the decision surface that is

chosen. Maximizing the margin is good because the points near the decision surface represent

very uncertain classification decisions and there is almost a 50% chance of the classifier deciding

either way. A classifier with a large margin makes no low certainty classification decisions. In

Addition, if we have to place a fat separator between classes, one has fewer choices of where it

can be put, what increases the ability to test the data correctly.

2.2.6 Class Sequential Rules (CSR):

Association rules are an important class of regularities in data. Mining of association rules is a

fundamental data-mining task. It may be the most important model invented and vastly studied

 19

by the database and data-mining community. Given a set of input sequences, the task is to find

all sequential patterns that satisfy a user-specified minimum support (or frequency) constraint.

Association rule mining does not consider the order of transactions. However, in many

applications such orderings are significant. For these applications, association rules will not be

appropriate and sequential patterns are needed. We define the problem of mining sequential

patterns and introduce the main concepts involved.

Let I = {i1, i2, …, in} be a set of items. A sequence is an ordered list of item sets. An item-set X is

a non-empty set of items where X ⊆ I. We denote a sequence s by 〈a1a2…ar〉, where ai is an item

set, also called an element of s, and ai is denoted by {x1, x2, …, xk}, where xj ∈ I is an item. An

item can occur only once in an element of a sequence, but can also occur many times in different

elements. The size of a sequence is the number of elements in the sequence. The length of a

sequence is the number of items in the sequence. A sequence of length k is called a k-sequence.

If an item occurs multiple times in different elements of a sequence, each occurrence contributes

to the value of k. A sequence s1 = 〈a1a2…ar〉 is a subsequence of another sequence s2 =

〈b1b2…bm〉, if there exist integers 1 ≤ j1 < j2 < … < jr-1 ≤ jr such that a1 ⊆ bj1, a2 ⊆ bj2, …, ar ⊆

bjr. We also say that s2 contains s1.

Example: We have I = {1, 2, 3, 4, 5, 6, 7}. The sequence 〈{3}{4, 5}〉 is contained in 〈{6}{3,

7}{4, 5, 6}〉 because {3} ⊆ {3, 7} and {4, 5} ⊆ {4, 5, 8}. However, {3}{8} is not contained

in {3, 8} or vice versa. The size of the sequence {3}{4, 5}{8} is 3, and the length of the

sequence is 4.

The problem definitions: Given a set S of input data sequences, the problem of mining sequential

patterns is to find all sequences that have a user-specified minimum support. The support for a

sequence is the fraction of total data sequences in S that contains this sequence.

Example:

The sequence database:

 20

1 〈{30}{90}〉

2 〈{10,20}{30}{10,40,60,70}〉

3 〈{30,50,70,80}〉

4 〈{30}{30,40,70,80}{90}〉

5 〈{90}〉

The output of sequential patterns with the minimum support of 25%:

1-sequences 〈{30}〉, 〈{40}〉, 〈{70}〉, 〈{80}〉, 〈{90}〉

2-sequences 〈{30}{40}〉, 〈{30}{70}〉, 〈{30}{90}〉, 〈{30, 70}〉, 〈{30, 80}〉, 〈{40, 70}〉, 〈{70,

80}〉

3-sequences 〈{30} {40, 70}〉, 〈{30, 40, 80}〉

A sequential pattern then is simply a sub-sequence that appears more frequently in the input

sequences than the minimum support threshold. Many algorithms exist for mining such patterns

in data-mining. A class sequential rule (CSR) is a rule with a sequential pattern on the left and a

class label on the right.

Class sequential rules (CSR) are also analogous to class association rules (CAR). Let S be a set

of data sequences. Each sequence is also labeled with a class y. Let I be the set of all items in S,

and Y be the set of all class labels, I ∩ Y = ∅. Thus, the input data D for mining is represented

with {(s1, y1), (s2, y2), …, (sn, yn)}, where si is a sequence in S and yi ∈ Y is its class.

CSR is of the form X → y,where X is a sequence, and y ∈ Y. A data instance (si, yi) is said to

cover a CSR, X → y, if X is a subsequence of si. A data instance (si, yi) is said to satisfy a CSR if

X is a subsequence of si and yi = y. The support (sup) of the rule is the fraction of total instances

in D that satisfies the rule. The confidence (conf) of the rule is the proportion of instances in D

that covers the rule and also satisfies the rule.

Example:

 21

1 〈{1}{3}{5}{7, 8, 9}〉 c1

2 〈{1}{3}{6}{7, 8}〉 c1

3 〈{1, 6}{9}〉 c2

4 〈{3}{5, 6}〉 c2

5 〈{1}{3}{4}{7, 8}〉 c2

Using the minimum support of 20% and a minimum confidence of 40%, one of the discovered

CSRs is:

〈{1}{3}{7, 8}〉 → c1 [support = 2/5 and confidence = 2/3]

Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5 cover the rule.

The GSP algorithm can be modified to produce algorithms for mining all class-sequential rules.

The algorithm displayed below is a modified GSP algorithm for mining class-sequential rules.

Given a set S of input data sequences where each data sequence is labeled with a class Y, the

modified GSP algorithm finds all sequences that have a user-specified minimum support and

user minimum confidence (Blanken et al., 2007).

2.2.7 Part-Of-Speech (POS):

Part-of-speech tagging is one of the most important text analysis tasks used to classify words into

their part-of-speech and label them according to the tag set, which is a collection of tags used for

the POS tagging. The POS tagging is the process of marking up a word in a text as

corresponding to a particular part of speech, based on both its definition, as well as its context.

Example:

Text: They refuse to permit us to obtain the refuse permit

POS: ('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),

('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]

In this paper we use NLTK 3 Taggers, which contain classes and interfaces for part-of-speech

tagging. A tag is a case-sensitive string that specifies some property of a token, such as its part of

http://textanalysisonline.com/

 22

speech. This package defines several taggers, which take a token list, assign a tag to each token,

and return the resulting list of tagged tokens. Most of the taggers are built automatically based on

the "Penn Treebank tag-set".

The Penn Treebank tag-set is based on the Brown Corpus, along with the deduction of the

number of POS considerably. A key-factor in reducing the tag-set was to eliminate redundancy

by taking into account both lexical and syntactic information. Another difference between these

two tag-sets is that in the Brown Corpus words tend to be tagged independently of their syntactic

function. By contrast, the Penn Treebank encodes a word's syntactic function in its POS tag

whenever possible. A final difference between the Penn Treebank tag-set, and all other tag-sets,

is that it allows words to be associated with more than one POS tag. The Penn Treebank tag-set

contains 36 POS tags and 12 other tags (for punctuation and currency symbols).

1. CC Coordinating conjunction

2. CD Cardinal number

3. DT Determiner

4. EX Existential there

5. FW Foreign word

6. IN Preposition/subordinating conjunction

7. JJ Adjective

8. JJR Adjective, comparative

9. JJS Adjective, superlative

10. LS List item marker

11. MD Modal

12. NN Noun, singular or mass

13. NNS Noun, plural

14. NNP Proper noun, singular

15. NNPS Proper noun, plural

16. PDT Predeterminer

17. POS Possessive ending

18. PRP Personal pronoun

19. PP$ Possessive pronoun

20. RB Adverb

21. RBR Adverb, comparative

22. RBS Adverb, superlative

23. RP Particle

24. SYM Symbol

25. TO to

26. UH Interjection

27. VB Verb, base form

28. VBD Verb, past tense

29. VBG Verb, gerund/present participle

30. VBN Verb, past participle

31. VBP Verb, non-3rd ps. sing. Present

32. VBZ Verb, 3rd ps. sing. Present

33. WDT wh-determiner

34. WP wh-pronoun

35. WP$ Possessive wh-pronoun

36. WRB wh-adverb

 23

The tagged version of the Penn Treebank corpus is produced in two stages, using a combination

of automatic POS assignment and manual correction. The automatic POS assignment is provided

by a cascade of stochastic and rule-driven taggers developed on the basis of early experience.

The result of the first, automated stage of POS tagging is given to annotators to correct (Marcus,

Santorini, & Marcinkiewicz, 1993; Santorini, 1990).

2.2.8 Semi-supervised Algorithm for Sarcasm Identification (SASI):

The aim of the SASI algorithm is to recognize sarcastic sentences in product reviews.

The SASI algorithm employs two modules:

1. Semi-supervised pattern acquisition for identifying sarcastic patterns that serve as

features for a classifier.

2. A classification algorithm that classifies each sentence to a sarcastic class.

The algorithm was experimented on a data set of about 66000 Amazon reviews for various books

and products and obtained a precision of 77% and a recall of 83.1% for identifying sarcastic

sentences (Tsur et al., 2010). We further detail SASI here, as in this paper we devise an

algorithm for extracting comparison sentences that are built upon it.

First, the researches collected a small set of existing sentences and gave them scores between 1-

5, where 1 is a sarcastic sentence and 5 is not.

From each sentence a feature-vector was created, while two features were taken under

consideration:

1. Pattern base

2. Syntactic

(These vectors will be used later in the classification stage).

In this stage of the algorithm, each appearance of a product/author/company/book name is

replaced with a corresponding generalized tag ‘[product]’, ‘[company]’, ‘[title]’ and ‘[author]’ in

order to produce less specific patterns.

2.2.9 Pattern-based features:

Pattern extraction

The researchers classify words into two types:

HFW (High Frequency Word) – words that appear in a frequency of 1K / 1M.

1. CW (Content Word) – words that appear in a frequency of 100 / 1M.

 24

Punctuation marks and the ‘[product]’, ‘[company]’, ‘[title]’ and ‘[author]’ tags are considered as

HFW.

They define a pattern as an ordered sequence of HFW and CW, according to the following rules:

1. Each pattern contains 2-6 HFW

2. Each pattern contains 1-6 CW

3. Each pattern should start and end in HFW (in order to avoid collection of patterns which

capture a part of a multiword expression).

For each sentence a multitude of patterns may be produced.

Example:

For the sentence: “Garmin apparently does not care much about product quality or customer

support”, the following patterns are applicable:

“[company]* CW does not CW much”

“does not CW much about CW CW or”

“not CW much”

“about CW CW or CW CW.*”

*“[company]” and “.” are treated as high frequency words.

Pattern selection

At this stage, the following patterns are removed:

1. Product-specific patterns

Example: “looking for a CW camera”. This pattern is specific to a type of camera.

2. Patterns that appear as a positive or negative context.

Example: “either CW or CW”. This pattern can appear both in a sarcastic and non-

sarcastic sentence.

Pattern matching

presently, each pattern receives a value to create a single-feature vector. Values are calculated

according to the following scheme:

1 : Exact match – all the pattern components appear in the sentence in correct order without any

additional words.

1. α : Sparse match – same as exact match but additional non-matching words can be

inserted between pattern components.

 25

2. γ ∗ n/N : Incomplete match – only n > 1 of N pattern components appear in the sentence,

while some non-matching words can be inserted in-between. At least one of the

appearing components should be a HFW.

3. 0 : No match – nothing or only a single-pattern component appears in the sentence.

α = γ = 0.1

Example:

For the sentence presented in the above section:

“Garmin apparently does not care much about product quality or customer support”

The following values will be calculated:

“[title] CW does not” - the value would be 1.

“[title] CW not” – the value would be 0.1.

“[title] CW CW does not” – the value would be 0.1 ∗ 4/5 = 0.08.

Punctuation-based features

The features calculated in the previous section were added the following:

Sentence length in words.

1. Number of “!” characters in the sentence.

2. Number of “?” characters in the sentence.

3. Number of quotes in the sentence.

4. Number of capitalized/all capitals words in the sentence.

The resulted values were normalized to be between 0 and 1, by dividing them according to the

maximal observed value.

In order to decide if a sentence in the test-set is sarcastic or not, the researches use the kNN

classifier. They constructed feature-vectors for each example in the training and test-sets.

For each example in the test set they found the k nearest vectors in the training- set. Thus, the

score for the test-set example is a weighted average of the k closest training-set vectors. If no

matching vectors were found, the test-set example received a score of 1 (Tsur et al., 2010).

 26

3 Data and Method
3.1 Data Description

We are interested in finding and extracting comparative sentences between two restaurants in

online product reviews. We use a collection of 1037 reviews extracted from Yelp2. The

collection contains reviews of different restaurants written by different reviewers.

Each review is for a specific restaurant. The name of the restaurant appears separately in the

meta-data part of the data-set, and was extracted from the site. In case the review includes a

comparison with another restaurant, the name of the other restaurant will appear in the review

itself. Since our main goal is finding reviews that compare 2 or more restaurants, we would like

to capture helpful sentences, which include such names.

While extracting the comparative sentences we have two main concerns:

1. The name of the restaurant mentioned in the review must be different from the restaurant

the review was written about. In order to avoid this problem, we compared the

restaurant's name found inside the review text to the name of the reviewed restaurant. The

sentence was added to our new extracted database only if these two names were different.

2. To generalize the dataset, we automatically replaced each appearance of a restaurant's

name with the corresponding generalized [rest] tags.

3.1.1 Training-set construction:

We extracted 1037 reviews from “Yelp” using the following algorithm.

We scanned all the reviews on “Yelp” and for each review:

A. We scanned for the restaurant’s name in the review text.

B. If succeeded, we checked whether the restaurant is different from the restaurant the

review was written about.

C. If succeeded, we added the review to the training set.

D. We extracted the sentence that was suspected to be comparative from each review.

E. We scanned the training-set and manually tagged all the sentences. Sentences that

contained comparisons between 2 or more restaurants were tagged as 1, whereas all other

reviews were tagged as 0.

2 http://www.yelp.com

https://www.google.co.il/search?q=restoranes&espv=2&biw=1366&bih=643&tbm=isch&tbo=u&source=univ&sa=X&ved=0CCMQsARqFQoTCJzbyZG-n8gCFcs_PgodYwcO_Q

 27

3.1.2 Labeling:

The data set was manually labeled by two students, each working alone. We labeled the

sentences that were extracted as following: 1 = has a comparison, 0= no comparison in the

sentence. In addition, we divided the sentences into different comparison types: g= first

restaurant is compared favorably to second, e= equivalent, l=first restaurant is compared as

inferior to second.

3.1.3 Data summary:

 Number of

sentences

Percent Percent of

valid

sentences

Percent of

comparative

sentences

Total 1037 100%

Sentences with problems 39 4%

Total valid sentences 998 96% 100%

Comparative sentences 663 64% 66% 100%

First restaurant is compared

favorably to second

210 20% 21% 32%

Equivalent 146 14% 15% 22%

First restaurant is compared as

inferior to second

307 30% 31% 46%

Non comparison 335 32% 34%

3.2 Method

3.2.1 Method Description:

This paper studies the problem of identifying comparative sentences in restaurant reviews at the

sentence-level. The problem is related to extracting comparative sentences from text documents.

Our main objective is finding an algorithm that identifies comparison sentences in restaurants

 28

review. We propose to study the comparative sentence identification problem without

categorizing the comparative sentences into different comparison types. In this paper we present

two algorithms: one is based on the Semi-supervised Algorithm for Sarcasm Identification

(SASI) and the other is based on an algorithm for identifying comparative sentences in text

document. Results will be presented for each algorithm separately. These algorithms will be

compared in the conclusion chapter.

3.2.2 Algorithms:

To identify whether any of the keywords-based approaches is valid, we first implemented the

algorithm suggested in Jindal & Liu (2006). Since the total list of the 83 keywords they used for

finding comparative sentences was not published, we tried to implement their method using only

the keywords that were mentioned in their work explicitly. In this stage, we analyze our data

searching for JJR, JJS, RBR and RBS tags. These tags were used as keywords in Jindal & Liu

(2006) algorithm. We discovered that only 163 sentences out of 998 sentences (16%) contained

words with POS tags 'JJR', 'JJS', 'RBP' and 'RBS'. We also found that only 128 out of 663 (19%)

comparative sentences contained words with these POS tags. Therefore, using this algorithm, we

can only find 18% of the comparative sentences utmost, and are likely to find less. Due to that

concern we could not proceed with this method.

In order to solve the problem that was not approached on Jindal & Liu (2006), and in order to

suggest an applicable method for the identification of comparative sentences in the restaurant

domain, this paper focuses on two algorithms: Pattern-based algorithm and sequence-feature

algorithm.

3.2.2.1 Pattern-based Algorithm

3.2.2.1.1 Rational:

Pattern matching for classification is a broad area of research. Tsur et al., (2010) and Davidov et

al., (2010) proposed a unique method for creating patterns, by finding patterns of high-

frequency words (HFW) and content words (CW). Words that appear in the English language in

a frequency of 1000 words per million are set as HFW, whereas words in a frequency of 100

words per million are set as CW. The researches created a long list of patterns, labeled them

 29

manually, and defined over a large dataset new patterns according to their distance from the

manually tagged patterns.

As the keyword-based approach seems to fail to perform in the restaurant domain, we try to

construct patterns that differentiate comparative sentences from non-comparative sentences. In

order to achieve a clear set of data that is relevant to the restaurant domain, we operated 4 stages:

pattern extraction, classification, distance measuring and K selection.

3.2.2.1.2 Pattern extraction:

The first stage of the algorithm is the pattern extraction stage. Going through the restaurants

reviews, we can easily notice that each review usually focuses on specific restaurants. However,

using a pattern that includes a restaurant name makes the pattern specific for this restaurant

reviews. Unfortunately, it is almost impossible for the algorithm to connect patterns that contain

different restaurant names. In order to produce less specific patterns, we automatically replace

each appearance of a restaurant name with corresponding generalized [rest] tags. Since the

patterns we extract in this stage will be later used as an input data for the kNN classifier, we

aimed to capture as many helpful patterns as possible.

We then extract a pattern for each sentence based on an algorithm that was first introduced by

Davidov & Rappoport (2006) and was used later by Tsur et al.. Both researches proposed a

unique method for creating patterns, by classifying words into two types: high-frequency words

(HFW) and content words (CW). Words that appear in the English language in a frequency of

1000 words per million are set as HFW, whereas words in a frequency of 100 words per million

are set as CW. According to their method, on this paper, for each sentence we replaced the

content words with the [CW] tag as long as they were less important to the content of the pattern.

Unlike Tsur et al., in our pattern creation we removed the punctuation marks due to the fact that

many reviewers use punctuation marks out of context.

In order to decide if a word is a HFW or CW, we used a stop-word list that can be viewed in the

appendix section. Words that were found in the stop-words list were labeled HFW and all the

other words were labeled as CW. The concept of the HFW is very similar to stop words, since

they are defined as very frequent, however not significant in the sentence. Additionally, since

 30

Tsur et al., considered the tags ‘[product]’, ‘[company]’, ‘[title]’ and ‘[author]’ as HFWs, we treat

the [rest] tag as HFWs.

We extract patterns from sentences according to the following rules, with a goal of defining the

shortest pattern possible:

1) Each pattern is allowed to have 2-6 HFW and 1-6 CWs.

2) Each pattern is required to start and to end with a HFW.

Thus, a minimal pattern is of the form [HFW] [CW] [HFW], and must have at least 3 words and

a maximal pattern cannot have more than 12 words.

Example:

The sentence:

The best dessert I have got since my dinner at La Ciccia.

The pattern:

have cw cw cw cw at [rest]

3.2.2.1.3 Classification:

After creating a learning-set, we use the remaining 1/6 of the data as a test set. We perform a

kNN classification on the patterns in the test-set and for each pattern we find the k nearest

patterns. We then count the positive and the negative patterns from the k nearest patterns that

were found and decide whether the test sentence is positive or negative. If the majority of the

patterns were comparative, we classify the sentence as comparative.otherwise, we classify the

sentence as non-comparative. If the test sentence had an equal number of positive and negative

neighbors, or had none, it was classified as negative.

3.2.2.1.4 Distance Measuring:

On the third stage, we describe the most important part in the classification, which is the way the

distance between patterns was measured. We gave a score for each pattern, according to the

distance measured from the tested pattern and by following these rules:

 31

1: Exact match – all the pattern components appear in the sentence in the correct order, without

any additional words.

α : Sparse match – same as exact match, but additional non-matching words can be inserted

between pattern components.

γ ∗ n/N : Incomplete match – only n > 1 of N pattern components appear in the sentence, while

some non-matching words can be inserted in-between. At least one of the appearing components

should be a HFW.

0 : No match – nothing or only a single pattern component appears in the sentence.

We will set α= γ=0.1

Example:

The sentence:

The best dessert I have got since my dinner at La Ciccia.

Pattern distance:

have cw cw cw cw at [rest] = 1.0

have cw cw at [rest] = 0.1

have cw cw cw cw at cw [rest] = 0.1*7/8

Patterns that were given the score of 1 are considered to be the closest neighbors. The farther we

are from the template, the farther the score is dropped. We gather the k patterns that received the

highest score and then classify the test-sentence, according to the majority of patterns that were

collected. In the k collected patterns, patterns that received a lower score were treated equally,

regardless of their score.

 32

3.2.2.1.5 K selection:

The k value that was used for the kNN classification was set to 12 according to the following

calculation:

K was calculated as √(test set size)2
 = √160

2
= 12

We experimented with different k values (k=5, k=20, k=30) and did not get better results.

3.2.2.2 Sequence Feature Algorithm

3.2.2.2.1 Rational:

Comparative sentences in the restaurant domain do not use pre-defined keywords (nor follow a

set). However, the syntactic structure of the comparative sentences varies, but might have a

similar structure, at the part of the sentence doing the actual comparison. Hence, on the second

algorithm we would like to identify part-of-speech (POS) tags near and around the compared

restaurant’s name. We use the words within the radius of 3 words from the restaurant name as a

sequence in our data, based on Jindal & Liu (2006) claim that a radius of 3 gives optimal results.

Also, a sequence constructed by words within radius of 4 or above has been too specific, while

using a radius of 2 or less did not give sufficient information. Our experiments produced the

same results.

Example:

This is easily the best meal that I have had since La Ciccia.

('This', 'DT'), ('is', 'VBZ'), ('easily', 'RB'), ('the', 'DT'), ('best', 'JJS'), ('meal', 'NN'), ('that', 'WDT'),

('I', 'PRP'), ('have', 'VBP'), ('had', 'VBN'), ('since', 'IN'), ('La Ciccia’, 'rest')

('had', 'VBN'), ('since', 'IN'), ('La Ciccia’, 'rest')

We started with the ahi tuna ceviche, which I actually enjoyed more than the numerous ceviches

I've had at SPQR.

('We', 'PRP'), ('started', 'VBD'), ('with', 'IN'), ('the', 'DT'), ('ahi', 'NN'), ('tuna', 'NN'), ('ceviche',

'NN'), ('which', 'WDT'), ('I', 'PRP'), ('actually', 'RB'), ('enjoyed', 'VBD'), ('more', 'JJR'), ('than',

'IN'), ('the', 'DT'), ('numerous', 'JJ'), ('ceviches', 'NNS'), ('I', 'PRP'), ("'ve", 'VBP'), ('had', 'VBN'),

('at', 'IN'), ('SPQR', 'rest')

('had', 'VBN'), ('at', 'IN'), ('SPQR', 'rest')

 33

This example shows that even if the content of the sentences is different and there is a great

variation between POS tags far from the restaurant name, the POS tags around the restaurant

name are identical. This is why the main strategy of the sequence-feature algorithm is POS tags

strategy.

3.2.2.2.2 POS tags strategy:

POS tags strategy was first presented by Jindal & Liu (2006) for the purpose recognizing

comparative sentences. We will also use this strategy for its efficiency. On this paper, we

discovered that we cannot use the words as they are in each sentence, since the content of some

sentences may be very different but their meaning can be the same. Using the words as they are

may not produce such patterns.

Example:

Americano is better than SPQR

NOPA is smaller than La Ciccia

Although an English speaker can clearly notice the resemblance of these two sentences, it will be

very difficult for an algorithm to detect any pattern. However, replacing each word with its POS

tag and each restaurant's name with the tag [rest], turns the pattern apparent to the algorithm.

Therefore, from this point we will replace all the words in the comparative sentence with their

POS tags and all the names of the restaurants with a [rest] tag.

3.2.2.2.3 Algorithm steps:

The sequence-feature algorithm contains 4 stages:

1) Sequence construction – on this stage we replace all the words in the sentence with POS

tags and the restaurant's name in the sentence with the [rest] tag. Also, we cut the

sentences to a sequence within the radius of 3 words of the restaurant name.

 34

2) Preparing sequence vectors –on this stage we convert the sequence to a sequence-vector

that will be used later in the classification learning-stage (4).

3) Applying CSR rules – on this stage we generate SCR rules, based on the sequence we

generated in stage (1). We use the CSR technique for removing noise sequences. This

stage is optional and will not be used necessarily.

4) Classification learning –On this stage we will perform NB and SVM machine-learning on

the vector, to decide if the sentence is comparative or not.

All 4 sections are described in detail as follows:

I. Sequence construction:

We construct sequences that will be used by our algorithm. The sequences are constructed in five

stages:

1) Replacing the name of the restaurant with the [rest] tag in each sentence. Given the fact

that the restaurant name is a key-component of our sentence, the [rest] tag is used as a

keyword in our algorithm. In order to replace a restaurant’s name with a tag, we use a

database that contains all restaurants names that derived from “Yelp” reviews.

2) Removing punctuation marks, since many of the reviewers use unnecessary punctuation

marks.

3) Replacing all the words with a POS tag. As mentioned earlier, the actual word was not

used, in order to make it easier for the algorithm to compare the patterns. Instead, we

used the postag function provided by The Natural Language Toolkit (NLTK) 3.0 – an

open source Python library for Natural Language Processing, to convert the words in the

reviews to POS.

4) Using the words that are within the radios of 3 words of the restaurant name in the

sentence as a sequence in our data.

5) Labeling each sentence by “Comparative” or “Non-comparative”

Example:

The sentence:

 35

The best dessert I have got since my dinner at La Ciccia.

Intermediate sequence:

[('The', 'DT'), ('best', 'JJS'), ('dessert', 'NN'), ('I', 'PRP'), ('have', 'VBP'), ('got', 'VBN'),

('since', 'IN'), ('my', 'PRP$'), ('dinner', 'NN'), ('at', 'IN'), (Rest)]

Final sequence:

({PRP} {NN} {IN} {Rest}) Class: comparing between two restaurants

II. Preparing sequence vectors:

We were looking for a matching POS tags around a restaurant’s name the reviewer is comparing

the reviewed restaurant to. However, the approach of having a sequence feature-vector of POS

tags does not take the order in which the POS tags appear into account. While we did not find

any global patterns for the sentences, we noticed the existence of local patterns around the

compared restaurant’s name. To allow for a partial ordering over the resulted feature vectors, we

created a vector in which each POS tag and each couple of adjacent POS tags have a separate

entry in the feature vector. Hence, the two POS tags ’NN’, ’IN’ become three different features

in the feature vector, as follows: ’NN’, ’IN’, ’NN, ‘IN’.

The following is an example of the effect of the bi-grams approach on the resulted vectors.

Example:

sequence1 = 'VBP VBN IN rest'

sequence2 = 'VBP rest VBN IN'

1-gram-only vectorizer

vector1 = [1 1 1 1]

vector2 = [1 1 1 1]

(1,2)-gram vectorizer

vector1 = [1 1 1 0 1 1 1 0 1]

 36

vector2 = [1 0 1 1 1 1 1 1 0]

The vectors received carry more information and enable a more specific representation of the

comparison itself. Hence, we have repeated the entire process with all the experiments described

in the previous section.

Since the NB and the SVM classifiers are designed to direct the usage of vectors, and cannot

receive literal input, we converted the sequence constructed in the previous stage to sequential

vectors. This data will be later used in the classification stage.

The creation of sequential vectors data is described in the following stages:

1) Each sequence is converted to numerical vector using Scikit-learn 2.0 - Machine

Learning tools for data mining and data analysis in Python CountVectorizer function.

We used two different methods for creating the vector:

 1-gram method – in this method we convert each POS tag in the sequence into a

different entry in the vector.

 1-2-gram range method – in this method we will extract 1-gram and 2-gram from

each sequence, i.e. we convert each POS tag and each couple of adjacent POS tags in

the sequence into a different entry in the vector.

The results of these two methods will be shown below.

2) “Comparative” sentences are converted to 1, and “Non-Comparative” sentences

converted to 0.

3) Each sentence forms a tuple of the type (sequential vector, class) in the data.

4) Each vector created in this stage is linked to its original sequence created in the previous

stage.

III. Applying SCR rules:

The CSR rules model is used to remove "noise sequences" from the training-set. Our goal is to

remove sequences that are not commonly used in our database nor specific for one class only,

since classification of these sequences would be arbitrary and therefore redundant for our

algorithm.

In this stage we generate class-sequential rules, which meet the minimum confidence and

minimum support. We use a minimum support value of 10%, and a minimum confidence value

 37

of 10%. This is due the fact our database is not large enough for using greater minimum support

and minimum confidence values. We eliminate all the sequences with support and confidence

smaller than 10% and all the sequential vectors linked to these sequences from the training data.

This method will be applied later on the algorithm.

IV. Classification learning:

In the final stage, a SVM and NB classification was performed on the vectors in the test-set. A

sentence was classified as comparative or not according to the output of the classifier.

 38

4 Results

The results will be presented according to the two algorithms used: pattern-based algorithm and

sequence-feature algorithm.

4.1 Pattern-based algorithm results:

The precision, recall, accuracy and F-score results are shown in percentages. The table below

shows the average of 6 different test-run of our algorithm. During each test-run we randomly

divided the dataset using the Scikit-learn 2.0 cross-validation train-test-split into two parts: 5/6 of

the data was used for learning and 1/6 was used for testing.

Using this method, we have achieved an average F-Score of 76.33% and an average accuracy of

63.38%. Although a good F-Score using this algorithm was received, the accuracy is not as high.

One of the main reasons may be that some of the created patterns were very different from all

other patterns and the distance between them and the other patterns cannot be measured, so the

algorithm randomly classifies them as comparative sentences. Another reason for the mediocre

performance of this algorithm is its focus on the HFW, whereas its drawback is by putting CW’s

into low priority. Many words that are very important in comparative sentences are CW’s, and

therefore this method may be good while seeking sarcastic sentences, but not as helpful for

comparison sentences. Since using the second Algorithm yielded better results, we decided it is

more suitable for our problem. Therefore, we did not proceed with this method and did not try

different classification methods.

 Precision Recall Accuracy F-Score

1. 73.00% 88.00% 68.00% 79.00%

2. 61.00% 92.00% 58.00% 73.00%

3. 72.00% 88.00% 66.00% 79.00%

4. 62.00% 91.00% 60.00% 73.00%

5. 70.00% 92.00% 67.00% 79.00%

6. 62.84% 93.00% 61.25% 75.00%

Average 66.81% 90.67% 63.38% 76.33%

 39

4.2 Sequence-feature algorithm results:

The precision, recall, accuracy and F-score results for different techniques used are presented

below in percentages. We randomly divided the data-set using the Scikit-learn 2.0 cross-

validation train-test-split into two parts: 5/6 of the data was used for learning and 1/6 was used

for testing. 6 iterations were made, while for each iteration we split the data, performed machine

learning on the learning-set and tested each sentence in the test set.

The following results are the average of all 6 iterations. We used Scikit-learn 2.0 Python

functions for classifications, the GaussianNB function for NB classification, LinearSVC function

for linear SVM classification SVC function for non-linear SVM classification. Default

parameters were used in all of these functions.

A detailed description of our experiments is as follows:

1) Using the NB classifier in order to classify the sentences to comparative and non-

comparative.

2) Using the SVM classifier with a linear kernel function in order to classify the sentences to

comparative and non-comparative.

3) Using the SVM classifier with rbf kernel function in order to classify the sentences to

comparative and non-comparative.

4) Applying CSR to the learning-set in order to exclude sequences with low support or

confidence. Then, we used the NB classifier in order to classify the sentences to comparative

and non-comparative.

5) Applying CSR to the learning-set in order to exclude sequences with low support or

confidence. Then, we used the SVM classifier with linear kernel function in order to classify

the sentences to comparative and non-comparative.

6) Applying CSR to the learning-set in order to exclude sequences with low support or

confidence. Then, we used the SVM classifier with rbf kernel function in order to classify the

sentences to comparative and non-comparative.

GaussianNB (Gaussian Naive Bayes): implements the Gaussian Naive Bayes algorithm for

classification. The likelihood of the features is assumed to be Gaussian.

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB

 40

LinearSVC (Linear Support Vector Classification): Similar to SVC with parameter

kernel=’linear’ 〈x, x′〉, but implemented in terms of liblinear rather than libsvm, so it has more

flexibility in the choice of penalties, function loss and should scale better (to large numbers of

samples). We used the default penalty parameter of the error term which is C=0.1. We tried

setting different values to the penalty parameter but did not get better results.

SVC (C-Support Vector Classification): The implementation is based on libsvm. The fit time

complexity is more than quadratic with the number of samples, which makes it hard to scale to

dataset with more than a couple of 10000 samples. We used the default kernel type function in

the algorithm which is kernel=’rbf’ (−γ|x − x′|2). We used the default value of the gamma

parameter which is 3, the gamma parameter specified the γ parameter in the kernel function. We

used the default penalty parameter of the error term which is C=0.1. We tried setting different

values to the penalty parameter but did not get better results.

Results using 1-grams method in the vectors creating stage:

1. NB

Accuracy 49.06%

4. NB &

CSR

Accuracy 64.79%

Precision 85.11% Precision 74.14%

Recall 32.07% Recall 73.48%

F-Score 43.11% F-Score 73.77%

2.

LinearSVM

Accuracy 73.75%
5.

LinearSVM

& CSR

Accuracy 71.15%

Precision 77.18% Precision 73.74%

Recall 86.77% Recall 88.92%

F-Score 81.62% F-Score 80.59%

3. SVC

Accuracy 73.33%

6. SVC &

CSR

Accuracy 71.67%

Precision 76.86% Precision 74.54%

Recall 86.63% Recall 88.17%

F-Score 81.34% F-Score 80.73%

 41

Results using 1-2-range-grams method in the vectors creating stage:

1. NB

Accuracy 47.29%

4. NB & CSR

Accuracy 64.80%

Precision 76.35% Precision 73.82%

Recall 30.63% Recall 73.31%

F-Score 43.54% F-Score 73.47%

2. LinearSVM

Accuracy 72.33%

5. LinearSVM &

CSR

Accuracy 70.65%

Precision 78.53% Precision 73.39%

Recall 80.77% Recall 87.97%

F-Score 79.54% F-Score 79.95%

3. SVC

Accuracy 74.89%

6. SVC & CSR

Accuracy 67.81%

Precision 75.48% Precision 68.43%

Recall 92.58% Recall 96.45%

F-Score 83.08% F-Score 79.96%

47.29

76.35

30.63

43.54

72.33
78.5380.7779.54

74.8975.48

92.58

83.08

64.8

73.8273.3173.47
70.6573.39

87.97

79.95

67.8168.43

96.45

79.96

0

20

40

60

80

100

120
A

cc
u

ra
cy

P
re

ci
si

o
n

R
ec

al
l

F-
Sc

o
re

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F-
Sc

o
re

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F-
Sc

o
re

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F-
Sc

o
re

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F-
Sc

o
re

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F-
Sc

o
re

NB LinearSVC SVC NB+CSR LinearSVC+CSR SVC+CSR

 42

Better results were received using 1-2-range-gram method than the 1-gram method in the vector

creating stage. The reason for this is that in comparative sentences, the word order in the

sentence is also important. By using bi-grams and not only one-grams during the vector creating

stage, we pay attention to word couples in the text, which constitute the order of the words in the

sentence. The best results were achieved by using the nonlinear SVM classifier with rbf kernel

function alone, and by using 1-2-range-gram method in the vector creating stage (F-Score of

83.08% and Accuracy of 74. 89%).

On one hand, we can see a very good improvement of the algorithm's performance by using the

NB classifier combined with the CSR method. By using only NB classifier we achieved the

accuracy of 47.29% and F-score of 43.54%, but by using NB classifier combined with the CSR

method we achieved the accuracy of 64.80% and F-score of 73.47%. On the other hand, we can

see deterioration in performance of the algorithm using nonlinear SVM classifier with CSR

method. By using only nonlinear SVM classifier we achieved the accuracy of 74.89% and F-

score of 83.08%, but by using nonlinear SVM classifier combined with the CSR method we

achieved the accuracy of 67.81% and F-score of 79.96%.

One reason for this difference is the different nature of the two classifiers - while the SVM

classifier ignores the noise vector, the NB classifier does not have this ability. Using the CSR

method we simply remove the noise vectors from the training set. Another reason for this lack of

improvement may be the fact that we use very low values for minimum confidence and

minimum support in the CSR method. However, trying higher values did not improved our

result. One of the hypothesis for improving the test result is trying to implement higher values

for minimum confidence and minimum support while using a bigger data-set.

 43

5 Conclusion

This paper suggested studying the problem of identifying comparative sentences in restaurant

reviews at the sentence-level. We presented two algorithms for solving this problem and

experimented them with a collection of 1037 reviews extracted from http://www.yelp.com. The

collection contained reviews for different restaurants written by different reviewers and with

different scales.

The first Algorithm presented on this paper, pattern-based algorithm, is based on the Semi-

supervised Algorithm for Sarcasm Identification, whilst the second algorithm, sequence-feature

algorithm, is based on an algorithm for identifying comparative sentences in text document.

Using the first algorithm, we have achieved an average F-Score of 76.33% and an average

accuracy of 63.38%. Better results was achieved by using the second algorithm, with a F-Score

of 83.08% and an accuracy of 74. 89%. The base reason for this is the different nature of the two

algorithms. The first algorithm focused on the HFW and put the CW’s into low priority, whereas

the second algorithm did not put different priorities on different types of words. Since many

words in comparative sentences are considered important, this method was found to be better for

seeking sarcastic sentences, but not as helpful while looking for comparison sentences. Due to

the drawback of the first algorithm our main focus was on improving the second.

Empirical evaluation using diverse text data sets demonstrated that our second algorithm is

indeed effective. Also, the performance of our system surpassed the algorithm of Jindal & Liu

(2006). As the original method found only 18% of the sentences comparing between two

restaurants, we received a F-Score of 83.08% and Accuracy of 74. 89%. That is to say that our

system indeed recognizes comparative sentences between two restaurants that do not contain any

comparative word.

In future works, we suggest improving both the precision and recall of the proposed technique,

as well as studying and implementing categorization methods, in order to improve the

classification of comparative sentences into different comparison types.

 44

6 References

Blanken, H. M., De Vries, A. P., Blok, H. E., & Feng, L. (2007). Data-Centric Systems and

Applications. Multimedia Retrieval. http://doi.org/10.1007/978-3-662-10876-5_5

Bril, E. (1995). Transformation-Based Error-Driven Learning and Natural Language Processing:

A Case Stady in Part-of-Speech. Journal Computational Linguistics Volume 21 543-565.

Dai, W., Jin, G. Z., Lee, J., & Luca, M. (2012). Optimal Aggregation of Consumer Ratings: an

Application to Yelp.com. NBER Working Paper, 18567. http://doi.org/10.3386/w18567

Davidov, D., & Rappoport, A. (2006). Efficient unsupervised discovery of word categories using

symmetric patterns and high frequency words. Proceeding ACL-44 Proceedings of the 21st

International Conference on Computational Linguistics and the 44th Annual Meeting of the

Association for Computational Linguistics, 297–304.

http://doi.org/10.3115/1220175.1220213

Davidov, D., Tsur, O., & Rappoport, A. (2010). Semi-Supervised Recognition of Sarcastic

Sentences in Twitter and Amazon. Fourteenth Conference on Computational Natural

Language Learning, (July), 107–116. http://doi.org/10.1145/1964858.1964874

Etzioni, O., Cafarella, M., Downey, D., Popescu, A. M., Shaked, T., Soderland, S., Weld, D.S.,

Yates, A. (2005). Unsupervised named-entity extraction from the Web: An experimental

study. Artificial Intelligence, 165(1), 91–134. http://doi.org/10.1016/j.artint.2005.03.001

Gamon, M., Gamon, M., Aue, A., Aue, A., Corston-Oliver, S., Corston-Oliver, S., Ringger, E.

(2005). Pulse: Mining customer opinions from free text. Lecture Notes in Computer

Science, 3646, 121–132. http://doi.org/10.1007/11552253_12

Ganapathibhotla, M., & Liu, B. (2008). Mining opinions in comparative sentences. Proceedings

of the 22nd International Conference on Computational Linguistics - COLING ’08, 1, 241–

248. http://doi.org/10.3115/1599081.1599112

Id, O. (2009). Online edition (c) 2009 Cambridge UP. Information Retrieval, (c), 1–18.

http://doi.org/10.1109/LPT.2009.2020494

Jindal, N., & Liu, B. (2006). Identifying comparative sentences in text documents. Proceedings of

the 29th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval - SIGIR ’06, 244. http://doi.org/10.1145/1148170.1148215

Jindal, N., Liu, B., & Bing, L. (2006). Mining comparative sentences and relations. Proceedings

of the 29th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval - SIGIR ’06, 21(2), 1331–1336.

http://doi.org/10.1107/S0108270189000326

 45

Kennedy, C. (2004). Comparatives , Semantics of ∗, 1–9.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a Large Annotated

Corpus of English: The Penn Treebank. Computational Linguistics, 19(2), 313–330.

http://doi.org/10.1162/coli.2010.36.1.36100

Park, D., & Blake, C. (2012). Identifying comparative claim sentences in full-text scientific

articles. … of the Workshop on Detecting Structure in Scholarly …, 1–9. Retrieved from

http://dl.acm.org/citation.cfm?id=2391173

Santorini, B. (1990). Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd

Revision). University of Pennsylvania 3rd Revision 2nd Printing, (MS-CIS-90-47), 33.

Retrieved from

http://www.personal.psu.edu/faculty/x/x/xxl13/teaching/sp07/apling597e/resources/Tagset.p

df

Tsur, O., Rappoport, A., & Davidov, D. (2010). ICWSM – A Great Catchy Name: Semi-

Supervised Recognition of Sarcastic Sentences in Online Product Reviews. Proceedings of

the Fourth International AAAI Conference on Weblogs and Social Media, (9), 162–169.

Xu, K., Liao, S., Li, J., & Song, Y. (2011). Mining comparative opinions from customer reviews

for Competitive Intelligence. Decision Support Systems, 50(4), 743–754.

http://doi.org/10.1016/j.dss.2010.08.021

Yang, S., & Ko, Y. (2009). Extracting Comparative Sentences from Korean Text Documents

Using Comparative Lexical Patterns and Machine Learning Techniques. Proceedings of the

ACL-IJCNLP 2009 Conference Short Papers, , 153–156.

http://doi.org/10.3115/1667583.1667631

Yang, S., & Ko, Y. (2011). Extracting Comparative Entities and Predicates from Texts Using

Comparative Type Classification. Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies - Volume 1,

1636–1644. Retrieved from http://dl.acm.org/citation.cfm?id=2002472.2002668

 46

7 Appendix
7.1 Data Creation

#Training set construction

import sql_func

import exel_func

import MySQLdb

import nltk

#getting comparative sentence from a review

def Get_Comp_Sentence(Data, Key):

 Sentences = nltk.sent_tokenize(Data)

 for Sentence in Sentences:

 location = Sentence.find(Key)

 if location >= 0:

 Words = nltk.word_tokenize(Sentence.replace(Key,"rest"))

 for Word in Words:

 if Word == "rest":

 return Sentence

 return None

connection =

MySQLdb.connect(host="127.0.0.1",user="root",passwd="123456",db="yelp")

cur = connection.cursor()

indexses=sql_func.CreateIndexs(cur)

nameToRestIndex=indexses[0]

restToNameIndex=indexses[1]

Review_Ids = exel_func.Get_Review_Ids()

print Review_Ids

workbook=exel_func.CreateExelWorkbook()

index=0

count=0

#searching comparative sentences in the reviewz

while (index < sql_func.GetRowCount(cur) and count<=1000):

 for row in sql_func.GetRevies(index,cur) :

 if row[0] not in Review_Ids:

 for key in nameToRestIndex.keys():

 location=row[5].find(key)

 if(location>=0 and nameToRestIndex[key]!=row[2] and

restToNameIndex.has_key(row[2])):

 Sentence = Get_Comp_Sentence(row[5], key)

 if Sentence is not None:

 count+=1

 #writing the data to excel

exel_func.AddDataColumn(workbook.worksheets()[0],count,row, restToNameIndex,

nameToRestIndex[key],workbook.formats[0],Sentence)

 break

 index+=1000

 print "index: "+str(index)+" count: "+str(count)

 47

workbook.close()

cur.close()

connection.close()

print "END"

7.2 Pattern-based Algorithm

#This algorithm is looking statement comparing restaurants in Restaurant

Reviews

import itertools

import exel_func

import nltk

import regex

from sklearn.cross_validation import train_test_split

#punctuation list to remove from the selected sentences

Punctuation_List = [".",",","!","?",";","...",":","$","(",")","-","--",'"']

#list of stop words

Stop_Words = ['a', 'about', 'above', 'across', 'after', 'afterwards',

'again', 'against', 'all', 'almost', 'alone', 'along', 'already', 'also',

'although', 'always', 'am', 'among', 'amongst', 'amount', 'an', 'and',

'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere',

'are', 'around', 'as', 'at', 'back', 'be', 'became', 'because', 'become',

'becomes', 'becoming', 'been', 'before', 'beforehand', 'behind', 'being',

'below', 'beside', 'besides', 'between', 'beyond', 'bill', 'both', 'bottom',

'but', 'by', 'call', 'can', 'cannot', 'cant', 'co', 'computer', 'con',

'could', 'cry', 'de', 'describe', 'detail', 'do', 'done', 'down', 'due',

'during', 'each', 'eg', 'eight', 'either', 'eleven', 'else', 'elsewhere',

'empty', 'enough', 'etc', 'even', 'ever', 'every', 'everyone', 'everything',

'everywhere', 'except', 'few', 'fifteen', 'fill', 'find', 'fire', 'first',

'five', 'for', 'former', 'formerly', 'forty', 'found', 'four', 'from',

'front', 'full', 'further', 'get', 'give', 'go', 'had', 'has', 'hasnt',

'have', 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein',

'hereupon', 'hers', 'him', 'his', 'how', 'however', 'hundred', 'i', 'ie',

'if', 'in', 'inc', 'indeed', 'interest', 'into', 'is', 'it', 'its' , 'keep',

'last', 'latter', 'latterly', 'least', 'less', 'ltd', 'made', 'many', 'may',

'me', 'meanwhile', 'might', 'mill', 'mine', 'more', 'moreover', 'most',

'mostly', 'move', 'much', 'must', 'my', 'name', 'namely', 'neither', 'never',

'nevertheless', 'next', 'nine', 'no', 'nobody', 'none', 'nor', 'not',

'nothing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one',

'only', 'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours',

'ourselves', 'out', 'over', 'own', 'part', 'per', 'perhaps', 'please', 'put',

'rather', 're', 'same', 'see', 'seem', 'seemed', 'seeming', 'seems',

'serious', 'several', 'she', 'should', 'show', 'side', 'since', 'sincere',

'six', 'sixty', 'so', 'some', 'somehow', 'someone', 'something', 'sometime',

'sometimes', 'somewhere', 'still', 'such', 'system', 'take', 'ten', 'than',

'that', 'the', 'their', 'them', 'themselves', 'then', 'thence', 'there',

'thereafter', 'thereby', 'therefore', 'therein', 'thereupon', 'these',

'they', 'thick', 'thin', 'third', 'this', 'those', 'though', 'three',

'through', 'throughout', 'thru', 'thus', 'to', 'together', 'too', 'top',

'toward', 'towards', 'twelve', 'twenty', 'two', 'un', 'under', 'until',

'up', 'upon', 'us', 'very', 'via', 'was', 'we', 'well', 'were', 'what',

'whatever', 'when', 'whence', 'whenever', 'where', 'whereas', 'whereby',

 48

'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither',

'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'will', 'with', 'within',

'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself', 'yourselves']

Reviews = exel_func.Get_Review()

Sets = train_test_split(Reviews, test_size=0.16)

Patterns = []

#creates patterns from sentences

for Review in Sets[0]:

 Pattern_Index=[]

 Rest_Index = -1

 First_Index = -1

 Last_Index = -1

 Words = nltk.word_tokenize(Review[6].replace(Review[4],"rest"))

 Index = 0

 for Word in Words:

 if Word == "rest":

 Rest_Index = Index

 Index += 1

 Index = 0

 for Word in Words:

 if Word in Stop_Words:

 if Index < (Rest_Index - 1):

 First_Index = Index

 if Index > (Rest_Index + 1):

 Last_Index = Index

 break

 Index += 1

 if First_Index == -1:

 First_Index = Rest_Index

 if Last_Index == -1:

 Last_Index = Rest_Index

 print "First_Index: " + str(First_Index)

 print "Last_Index: " +str(Last_Index)

 #creates the different regex for every pattern

 #Pattern_Index stores the pattern regex and distance from the pattern

 if First_Index != Last_Index and Last_Index - First_Index < 10 and

Rest_Index > -1:

 Index = 0

 List = []

 for Word in Words:

 if First_Index <= Index and Index <= Last_Index:

 if Rest_Index == Index :

 List.append('rest')

 elif Word in Stop_Words:

 List.append(Word)

 else:

 List.append('cw')

 Index += 1

 49

 Pattern1=""

 Pattern2=""

 for word in List:

 Pattern1+=exel_func.Get_Word_Regex(word)+"+s?[,]\s?"

 Pattern2+=exel_func.Get_Word_Regex(word)+"+(s?[,

]\s?\w+){0,100}s?[,]\s?"

 Pattern1=Pattern1[:-10]

 Pattern2=Pattern2[:-31]

 Pattern_Index.append((Pattern1, 1.0, Review[0], Review[7]))

 Pattern_Index.append((Pattern2, 0.1, Review[0], Review[7]))

 combs = []

 for i in range(len(List), 2, -1):

 els = [list(x) for x in itertools.combinations(List, i)]

 combs.extend(els)

 for comb in combs:

 Pattern=""

 Contain_Rest=False

 for word in comb:

 if word == "rest":

 Contain_Rest = True

 Pattern+=exel_func.Get_Word_Regex(word)+"+(s?[,

]\s?\w+){0,100}s?[,]\s?"

 if Contain_Rest:

 Pattern=Pattern[:-31]

 Pattern_Index.append((Pattern,(0.1*len(comb))/len(List),

Review[0], Review[7]))

 Patterns.append(Pattern_Index)

print "++++++++++++++++++++LEN+++++++++++++++++"

print len(Patterns)

print "++++++++++++++++++++LEN+++++++++++++++++"

workbook = exel_func.Create_Exel_Workbook()

worksheet = workbook.worksheets()[0]

tp = 0

fp = 0

fn = 0

tn = 0

#applying the knn classifier

index = 0

for Review in Sets[1]:

 Fixed_Review = Review[6].replace(Review[4], "rest")

 index += 1

 knn = dict()

 for Pattern_Index in Patterns:

 if Pattern_Index[0][2] != Review[0]:

 for Pattern in Pattern_Index:

 result = regex.search(Pattern[0],Fixed_Review)

 if result is not None:

 if Pattern[1] in knn:

 knn[Pattern[1]].append(Pattern[3])

 else:

 knn[Pattern[1]] = [Pattern[3]]

 break

 50

 print index

 print knn

 Sum = 0

 Pos = 0

 Neg = 0

 for Item in sorted(knn):

 if Sum <= 12:

 Sum += len(knn[Item])

 for Score in knn[Item]:

 if knn[Item] == 0:

 Neg += Item

 else:

 Pos += Item

 Match = 1 if Pos > Neg else 0

 print Match

 print Review[7]

 print "---"

 #tp

 tp += 1 if (Match == Review[7] and Match == 1) else 0

 #fp

 fp += 1 if (Match != Review[7] and Match == 1) else 0

 #fn

 fn += 1 if (Match != Review[7] and Match == 0) else 0

 #tn

 tn += 1 if (Match == Review[7] and Match == 0) else 0

#calculates the results

Precision = (tp * 100.00)/(tp+fp)

Recall = (tp * 100.00)/(tp+fn)

Accuracy = ((tp + tn) * 100.00)/ (tp+fp+tn+fn)

FScore = (2.0*Precision*Recall)/(Precision+Recall)

#writes results to excel

worksheet.write(0,0,"Precision")

worksheet.write(1,0,"Recall")

worksheet.write(2,0,"Accuracy")

worksheet.write(3,0,"FScore")

worksheet.write(0, 2, Precision)

worksheet.write(1, 2, Recall)

worksheet.write(2, 2, Accuracy)

worksheet.write(3, 2, FScore)

workbook.close()

print "END"

7.3 Sequence Feature Algorithm

#This algorithm is looking statement comparing restaurants in Restaurant

Reviews

 51

import nltk

import exel_func

from sklearn.naive_bayes import GaussianNB

from sklearn import svm

from sklearn.cross_validation import train_test_split

from sklearn.feature_extraction.text import CountVectorizer

#Calculates the precision

def CalcPrecision(Summary):

 return (Summary['TP']*100.00)/(Summary['TP']+Summary['FP'])

#Calculates the accuracy

def CalcTrueResult(Summary):

 return

((Summary['TP']+Summary['TN'])*100.00)/(Summary['TP']+Summary['FP']+Summary['

TN']+Summary['FN'])

#Calculates the recall

def CalcRecall(Summary):

 return (Summary['TP']*100.00)/(Summary['TP']+Summary['FN'])

#Calculates the F-Score

def CalcFScore(Summary):

 Precision = CalcPrecision(Summary)

 Recall = CalcRecall(Summary)

 return (2.0*Precision*Recall)/(Precision+Recall)

updates the summary for calculation

def UpdateSummary(Class,Predict,Summary):

 if Class == Predict:

 if Class == 1:

 Summary['TP']+=1

 else:

 Summary['TN']+=1

 else:

 if Class == 1:

 Summary['FN']+=1

 else:

 Summary['FP']+=1

#writes the results to excel

def AddData(worksheet,X,Y,Summary):

 Precision = CalcPrecision(Summary)

 Recall = CalcRecall(Summary)

 FScore = CalcFScore(Summary)

 TrueResult = CalcTrueResult(Summary)

 worksheet.write_number(X,Y,TrueResult)

 worksheet.write_number(X,Y+1,Precision)

 worksheet.write_number(X,Y+2,Recall)

 worksheet.write_number(X,Y+3,FScore)

#writes excel headers

def AddSubHeaderColumn(worksheet,X,Y,Name):

 worksheet.write(X,Y,Name)

 worksheet.write(X+1,Y,"Accuracy")

 worksheet.write(X+1,Y+1,"Precision")

 worksheet.write(X+1,Y+2,"Recall")

 52

 worksheet.write(X+1,Y+3,"F-Score")

 worksheet.merge_range(X,Y,X,Y+3,Name)

#writes excel column header

def AddHeaderColumn(worksheet):

 worksheet.write(0,0,"TotalItems")

 worksheet.write(1,0,"TestItems")

 worksheet.write(2,0,"SentLen")

 worksheet.write(0,2,"MinSup")

 worksheet.write(1,2,"MinConf")

 worksheet.write(3,0,"id")

 AddSubHeaderColumn(worksheet,3,1,"NB")

 AddSubHeaderColumn(worksheet,3,5,"LinearSVC")

 AddSubHeaderColumn(worksheet,3,9,"SVC")

 AddSubHeaderColumn(worksheet,3,13,"NuSVC")

 AddSubHeaderColumn(worksheet,3,17,"NB+CSR")

 AddSubHeaderColumn(worksheet,3,21,"LinearSVC+CSR")

 AddSubHeaderColumn(worksheet,3,25,"SVC+CSR")

 AddSubHeaderColumn(worksheet,3,29,"NuSVC+CSR")

#punctuation list to remove from the selected sentences

Punctuation_List = [".",",","!","?",";","...",":","$","(",")","-","--

",'"',"``","#","''",'-NONE-']

#vectorizes

vectorizer = CountVectorizer(ngram_range=(1, 2), token_pattern=r'\b\w+\b',

min_df=1)

Delta = 3

Cicle = 50

MinSup = 10

MinConf = 10

Count = 0

Test_Set = []

#gets the sentences that suspected as comparative from the manually labeled

DS

for Review in exel_func.Get_Review():

 Rest_Index = -1

 Index = 0

 Text = Review[6].replace(Review[4],"rest")

 #converting the words in the sentences to POS tags

 POSS = [POS for POS in nltk.pos_tag(nltk.word_tokenize(Text)) if POS[0]

not in Punctuation_List and POS[1] not in Punctuation_List and POS[1] is not

None]

 for POS in POSS:

 if POS[0] == "rest":

 Rest_Index = Index

 Index += 1

 #use the words that are within the radios of 3 words of the restaurant

 Index = 0

 List=[]

 for POS in POSS:

 53

 if (Rest_Index - Delta) <= Index and Index <= (Rest_Index + Delta

):

 if Rest_Index == Index :

 List.append('Rest')

 else:

 List.append(POS[1])

 Index += 1

 if Rest_Index > -1:

 Test_Set.append((List, Review[7], Count))

 Count +=1

Dict = {}

for Item in Test_Set:

 for i in range(0, len(Item[0])):

 if Item[0][i] != "Rest":

 pos = 0

 neg = 0

 if Item[1] == 1:

 pos = 1

 else:

 neg = 1

 if not Dict.has_key(Item[0][i]):

 Dict[Item[0][i]] = [pos, neg]

 else:

 Dict[Item[0][i]][0] += pos

 Dict[Item[0][i]][1] += neg

#building help data for the CSR rules

Dict2={}

for Item in Dict.iterkeys():

 Pos = Dict[Item][0]

 Neg = Dict[Item][1]

 Total = len(Test_Set)

 IvalPos = (Pos*100)/Total < MinSup or (Pos*100)/(Pos+Neg) < MinConf

 IvalNeg = (Neg*100)/Total < MinSup or (Neg*100)/(Pos+Neg) < MinConf

 if IvalPos or IvalNeg:

 Dict2[Item] = (IvalPos, IvalNeg)

Temp = []

for Item in Test_Set:

 Doc = '';

 for POS in Item[0]:

 Doc += POS;

 Doc += ' ';

 Temp.append(Doc)

#converts the sentences to vectors

Temp2 = vectorizer.fit_transform(Temp)

Temp3 = Temp2.toarray()

Vector_Set=[]

for i in range(0, len(Test_Set)):

 Vector_Set.append([Temp3[i], Test_Set[i][1], Test_Set[i][2]])

workbook=exel_func.Create_Exel_Workbook()

 54

Size = 0

#classifies the sentences to comparative an non-comparative

for j in range(0, Cicle):

 print j

 Sets = train_test_split(Vector_Set, test_size=0.16)

 #classifier creation

 clfNB = GaussianNB()

 clfLinearSVC = svm.LinearSVC()

 clfSVC = svm.SVC()

 clfNuSVC = svm.NuSVC()

 clfNBCSR = GaussianNB()

 clfLinearSVCCSR = svm.LinearSVC()

 clfSVCCSR = svm.SVC()

 clfNuSVCCSR = svm.NuSVC()

 #classifier training

 clfNB.fit([i[0] for i in Sets[0]], [i[1] for i in Sets[0]])

 clfLinearSVC.fit([i[0] for i in Sets[0]], [i[1] for i in Sets[0]])

 clfSVC.fit([i[0] for i in Sets[0]], [i[1] for i in Sets[0]])

 clfNuSVC.fit([i[0] for i in Sets[0]], [i[1] for i in Sets[0]])

 #applying the SCR rules to the sentences

 List=[]

 for Item2 in Test_Set:

 for Item1 in Sets[0]:

 if Item2[2] == Item1[2]:

 for SubItem in Item2[0]:

 if Dict2.has_key(SubItem):

 if Dict2[SubItem][0] and Item2[1] == 1:

 List.append(Item1[2])

 if Dict2[SubItem][1] and Item2[1] == 0:

 List.append(Item1[2])

 Sets1 = [x for x in Sets[0] if x[2] not in List]

 #classifier training

 clfNBCSR.fit([i[0] for i in Sets1], [i[1] for i in Sets1])

 clfLinearSVCCSR.fit([i[0] for i in Sets1], [i[1] for i in Sets1])

 clfSVCCSR.fit([i[0] for i in Sets1], [i[1] for i in Sets1])

 clfNuSVCCSR.fit([i[0] for i in Sets1], [i[1] for i in Sets1])

 SummaryNB = {'TP':0,'FP':0,'FN':0,'TN':0}

 SummaryLinearSVC = {'TP':0,'FP':0,'FN':0,'TN':0}

 SummarySVC = {'TP':0,'FP':0,'FN':0,'TN':0}

 SummaryNuSVC = {'TP':0,'FP':0,'FN':0,'TN':0}

 SummaryNBCSR = {'TP':0,'FP':0,'FN':0,'TN':0}

 SummaryLinearSVCCSR = {'TP':0,'FP':0,'FN':0,'TN':0}

 SummarySVCCSR = {'TP':0,'FP':0,'FN':0,'TN':0}

 SummaryNuSVCCSR = {'TP':0,'FP':0,'FN':0,'TN':0}

 Size = len(Sets[1])

 for i in range(0, len(Sets[1])):

 #getting the classification prediction

 55

 ResultNB = clfNB.predict([Sets[1][i][0]])

 ResultLinearSVC = clfLinearSVC.predict([Sets[1][i][0]])

 ResultSVC = clfSVC.predict([Sets[1][i][0]])

 ResultNuSVC = clfNuSVC.predict([Sets[1][i][0]])

 ResultNBCSR = clfNBCSR.predict([Sets[1][i][0]])

 ResultLinearSVCCSR= clfLinearSVCCSR.predict([Sets[1][i][0]])

 ResultSVCCSR = clfSVCCSR.predict([Sets[1][i][0]])

 ResultNuSVCCSR = clfNuSVCCSR.predict([Sets[1][i][0]])

 #updating the result summaries

 UpdateSummary(Sets[1][i][1],ResultNB,SummaryNB)

 UpdateSummary(Sets[1][i][1],ResultLinearSVC,SummaryLinearSVC)

 UpdateSummary(Sets[1][i][1],ResultSVC,SummarySVC)

 UpdateSummary(Sets[1][i][1],ResultNuSVC,SummaryNuSVC)

 UpdateSummary(Sets[1][i][1],ResultNBCSR,SummaryNBCSR)

 UpdateSummary(Sets[1][i][1],ResultLinearSVCCSR,SummaryLinearSVCCSR)

 UpdateSummary(Sets[1][i][1],ResultSVCCSR,SummarySVCCSR)

 UpdateSummary(Sets[1][i][1],ResultNuSVCCSR,SummaryNuSVCCSR)

 #write results to excel

 (workbook.worksheets()[0]).write_number(5+j,0,j)

 AddData(workbook.worksheets()[0],5+j,1,SummaryNB)

 AddData(workbook.worksheets()[0],5+j,5,SummaryLinearSVC)

 AddData(workbook.worksheets()[0],5+j,9,SummarySVC)

 AddData(workbook.worksheets()[0],5+j,13,SummaryNuSVC)

 AddData(workbook.worksheets()[0],5+j,17,SummaryNBCSR)

 AddData(workbook.worksheets()[0],5+j,21,SummaryLinearSVCCSR)

 AddData(workbook.worksheets()[0],5+j,25,SummarySVCCSR)

 AddData(workbook.worksheets()[0],5+j,29,SummaryNuSVCCSR)

#write results to excel

AddHeaderColumn(workbook.worksheets()[0])

(workbook.worksheets()[0]).write_number(0,1,len(Test_Set))

(workbook.worksheets()[0]).write_number(1,1,Size)

(workbook.worksheets()[0]).write_number(2,1,(2*Delta)+1)

(workbook.worksheets()[0]).write_number(0,3,MinSup)

(workbook.worksheets()[0]).write_number(1,3,MinConf)

workbook.close()

print "END"

7.4 Excel help library

#Help function that work with excel
import xlsxwriter

import tkFileDialog

import nltk.data

import xlrd

 56

import itertools

tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')

def AddHeaderColumn(worksheet):

 worksheet.write(0,0,"id")

 worksheet.write(0,1,"user")

 worksheet.write(0,2,"rest1-id")

 worksheet.write(0,3,"rest1-name")

 worksheet.write(0,4,"rest2-id")

 worksheet.write(0,5,"rest2-name")

 worksheet.write(0,6,"rating")

 worksheet.write(0,7,"date")

 worksheet.write(0,8,"text")

 worksheet.write(0,9,"comp-sentence")

 worksheet.write(0,10,"match")

def GetCompSentence(text, rest_name):

 data=tokenizer.tokenize(text)

 for record in data:

 location=record.find(" "+rest_name+" ")

 if location>=0:

 return record.decode('UTF-8')

 print rest_name

 for record in data:

 print record.find(rest_name)

 print record

 print "-----------------------------------"

def AddDataColumn(worksheet, rowNum, data, restToNameIndex, restId,

date_format, Sentence):

 worksheet.write(rowNum,0,data[0])

 worksheet.write(rowNum,1,data[1])

 worksheet.write(rowNum,2,data[2])

 worksheet.write(rowNum,3,restToNameIndex[data[2]].decode('UTF-8'))

 worksheet.write(rowNum,4,restId)

 worksheet.write(rowNum,5,restToNameIndex[restId].decode('UTF-8'))

 worksheet.write(rowNum,6,data[3])

 worksheet.write(rowNum,7,data[4],date_format)

 worksheet.write(rowNum,8,data[5].decode('UTF-8'))

 worksheet.write(rowNum,9,Sentence.decode('UTF-8'))

def AddDataColumn2(worksheet, rowNum, restId,name,count):

 worksheet.write(rowNum,0,restId)

 worksheet.write(rowNum,1,name.decode('UTF-8'))

 worksheet.write(rowNum,2,count)

def CreateExelWorkbook():

 filename = tkFileDialog.asksaveasfilename()

 workbook = xlsxwriter.Workbook(str(filename)+".xlsx")

 worksheet = workbook.add_worksheet("results")

 workbook.add_format({'num_format': 'DD/MM/YY'})

 AddHeaderColumn(worksheet)

 return workbook

 57

def GetPatterns():

 Patterns = []

 filename = tkFileDialog.askopenfilename()

 print filename

 workbook = xlrd.open_workbook(filename)

 worksheet=workbook.sheet_by_index(0)

 num_rows = worksheet.nrows - 1

 curr_row = -1

 while curr_row < num_rows:

 curr_row += 1

 if (worksheet.cell_value(curr_row, 10)==1):

 cell_value = worksheet.cell_value(curr_row, 12).lower()

 if cell_value:

 Pattern_Index=[]

 Pattern_Index.append((cell_value,))

 sentence=nltk.word_tokenize(cell_value)

 Pattern1=""

 Pattern2=""

 sentence.remove("[")

 sentence.remove("]")

 for word in sentence:

 Pattern1+=Get_Word_Regex(word)+"+s?[,]\s?"

 Pattern2+=Get_Word_Regex(word)+"+(s?[,

]\s?\w+){0,100}s?[,]\s?"

 Pattern1=Pattern1[:-10]

 Pattern2=Pattern2[:-31]

 Pattern_Index.append((Pattern1, 1))

 Pattern_Index.append((Pattern2, 0.1))

 combs = []

 for i in range(len(sentence), 2, -1):

 els = [list(x) for x in itertools.combinations(sentence,

i)]

 combs.extend(els)

 for comb in combs:

 Pattern=""

 Contain_Rest=False

 for word in comb:

 if word == "rest":

 Contain_Rest=True

 Pattern+=Get_Word_Regex(word)+"+(s?[,

]\s?\w+){0,100}s?[,]\s?"

 if Contain_Rest:

 Pattern=Pattern[:-31]

Pattern_Index.append((Pattern,(0.1*len(comb))/len(sentence)))

 Patterns.append(Pattern_Index)

 return Patterns

def Get_Review():

 Reviews=[]

 filename = tkFileDialog.askopenfilename()

 workbook = xlrd.open_workbook(filename)

 worksheet=workbook.sheet_by_index(0)

 num_rows = worksheet.nrows - 1

 curr_row = 0

 58

 while curr_row < num_rows:

 curr_row += 1

 if worksheet.cell_value(curr_row, 12) != 1:

 #0 Id

 Id = worksheet.cell_value(curr_row, 0)

 #1 Rest1_Id

 Rest1_Id = worksheet.cell_value(curr_row, 2)

 #2 Rest1_Name

 Rest1_Name = worksheet.cell_value(curr_row, 3)

 #3 Rest2_Id

 Rest2_Id = worksheet.cell_value(curr_row, 4)

 #4 Rest2_Name

 Rest2_Name = worksheet.cell_value(curr_row, 5)

 #5 Review

 Review = worksheet.cell_value(curr_row, 8)

 #6 Santence

 Santence = worksheet.cell_value(curr_row, 9)

 #7 Match

 Match = worksheet.cell_value(curr_row, 10)

 Reviews.append((Id, Rest1_Id, Rest1_Name, Rest2_Id, Rest2_Name,

Review, Santence, Match))

 return Reviews

def Get_Word_Regex(word):

 if word=="cw":

 return "\w";

 else:

 return "\\b"+word+"\\b"

def CreateExelWorkbook2():

 filename = tkFileDialog.asksaveasfilename()

 workbook = xlsxwriter.Workbook(str(filename)+".xlsx")

 worksheet = workbook.add_worksheet("results")

 worksheet.write(0,0,"id")

 worksheet.write(0,1,"name")

 worksheet.write(0,2,"count")

 return workbook

def Create_Exel_Workbook():

 filename = tkFileDialog.asksaveasfilename()

 workbook = xlsxwriter.Workbook(str(filename)+".xlsx")

 worksheet = workbook.add_worksheet("results")

 return workbook

def Add_Excel_Column_Caption_For_Output(worksheet):

 worksheet.write(0,0,"id")

 worksheet.write(0,1,"rest1-id")

 worksheet.write(0,2,"rest2-id")

 worksheet.write(0,3,"rest2-name")

 worksheet.write(0,4,"text")

 worksheet.write(0,5,"org-sentence")

 worksheet.write(0,6,"found-sentence")

 worksheet.write(0,7,"score")

 worksheet.write(0,8,"POS1")

 worksheet.write(0,9,"POS2")

 worksheet.write(0,10,"match")

 59

def Add_Data_Row_For_Output(worksheet, rowNum, data, Rest, Org_Sentence,

Found_Sentence, Score, POS_Match):

 #id

 worksheet.write(rowNum,0,data[0])

 #rest1-id

 worksheet.write(rowNum,1,data[1])

 #rest2-id

 worksheet.write(rowNum,2,Rest[0])

 #rest2-name

 worksheet.write(rowNum,3,Rest[1])

 #text

 worksheet.write(rowNum,4,data[5])

 #org-sentence

 worksheet.write(rowNum,5,Org_Sentence)

 #found-sentence

 worksheet.write(rowNum,6,Found_Sentence)

 #score

 worksheet.write(rowNum,7,Score)

 if POS_Match is not None:

 #POS1

 worksheet.write(rowNum,8,POS_Match[0])

 #POS2

 worksheet.write(rowNum,9,POS_Match[1])

 #match

 worksheet.write(rowNum,10,data[7])

def Get_Review_Ids():

 Review_Ids = []

 filename = tkFileDialog.askopenfilename()

 print filename

 workbook = xlrd.open_workbook(filename)

 worksheet=workbook.sheet_by_index(0)

 num_rows = worksheet.nrows - 1

 curr_row = -1

 while curr_row < num_rows:

 curr_row += 1

 Review_Ids.append(worksheet.cell_value(curr_row, 0))

 return Review_Ids

7.5 SQL help library

#Help function that work with sql

import nltk

#excel cannot work with this name 1165,146->not ascii && not rest or doubles

listOfNoiseRestaurants = set([1082, 1322, 1511, 1333, 1272, 1027, 1502, 1478,

1113, 1025, 1165, 146,

 60

 1328, 1507, 1154, 1073, 1074, 1254, 1111,

1057, 1132, 1338, 1100, 366,

 1484, 1294, 1237, 1151, 1660, 1308, 1202,

1052, 1029, 1388, 1203, 1177,

 1221, 2341, 1372, 1469, 904, 7390, 8215,

1175, 1036, 1394, 1624, 893, 955,

 11443, 11358, 1209, 1636, 5878, 892, 2514,

2950, 1615, 1501, 1649, 1396, 1058,

 4413, 7373, 1565, 1128, 1157, 1087, 1056,

8563, 1556, 1442, 1043, 1045, 1491,

 1135, 1164, 1431, 5175, 1231, 1149, 1329,

1196, 1197, 1134, 1023, 1086, 1085, 1291,

 6902, 1428, 1387, 1182, 3392, 1415, 1447,

1497, 1437, 3281, 1445, 1527, 3774, 1661,

 865, 1487, 3886, 1295, 14297, 6192, 3924,

1053, 5408, 5929, 2919, 1327, 4509, 1185,

 1546, 1513, 1318, 1605, 1672, 1273,

1159, 1324, 1160, 1233, 1403, 2223, 1435, 9821, 5007,

 4512, 1604, 1662, 1038, 2509, 1377,

1257, 1123, 2853, 6815, 1657, 1416, 5087, 1379,

 5252, 1414, 2477, 2468, 1458, 5407,

2843, 967, 1116, 1215, 1395, 1633, 1457, 1096,

 2465, 3359, 1125, 12571, 1467, 1462,

9436, 7251, 753, 1104, 2844, 6374, 1032, 971,

 1069, 1498, 1121, 9774, 1432, 1183,

2942, 1512, 1516, 12825, 1525, 2426, 943, 6134,

 1325, 1072, 1114, 1382, 5781, 7382,

8490, 1538, 1178, 870, 7378, 3203, 1169, 939, 1640,

 1758, 3658, 4634, 1438, 1500, 2915,

1078, 1357, 1314, 1179, 1189, 1262, 7247, 5238,

 1158, 4604, 1, 150, 425, 2734, 4930,

1245, 1247, 1266, 1300, 1367, 1670, 7957, 50, 6399,

 439, 493, 6726, 5312, 1392, 1539,

1547, 1683, 5813, 2362, 6030, 7362,

 7019, 917, 900, 1427, 1712, 6138,

1608, 1299, 1002, 393, 1136, 1373, 941, 17,

 851, 1418, 6329, 988, 1692, 4197,

5325, 3962, 3106, 1793, 1703, 924, 5177])

def GetRowCount(cur):

 cur.execute("select count(1) from reviews")

 return cur.fetchall()[0][0]

def CreateIndexs(cur):

 cur.execute("select id, name, reviews_num from restaurants where

reviews_num>30")

 nameToRestIndex={}

 restToNameIndex={}

 countIndex={}

 listOfNoiseRestaurants1=set(['SO','Street'])

 for row in cur.fetchall():

 if (row[0] not in listOfNoiseRestaurants and row[1] not in

listOfNoiseRestaurants1 and row[2]>30):

 nameToRestIndex[row[1]]=row[0]

 restToNameIndex[row[0]]=row[1]

 61

 countIndex[row[0]]=0

 return (nameToRestIndex,restToNameIndex,countIndex)

def Create_Rest_Set(cur):

 cur.execute("select id, name from restaurants")

 Result=[]

 for row in cur.fetchall():

 if row[0] not in listOfNoiseRestaurants and is_ascii(row[1]):

 Pattern=""

 for word in nltk.word_tokenize(row[1]):

 Pattern+='\\b'+word+'\\b'

 Pattern+='+s?[,]\s?'

 Pattern=Pattern[:-10]

 Result.append((row[0], row[1], Pattern))

 return Result

def GetRevies(index,cur):

 sql="select * from reviews limit 1000 offset "+str(index)

 cur.execute(sql)

 return cur.fetchall()

def is_ascii(s):

 return all(ord(c) < 128 for c in s)

7.6 Stop words list

Stop_Words = ['a', 'about', 'above', 'across', 'after', 'afterwards',

'again', 'against', 'all', 'almost', 'alone', 'along', 'already', 'also',

'although', 'always', 'am', 'among', 'amongst', 'amount', 'an', 'and',

'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere',

'are', 'around', 'as', 'at', 'back', 'be', 'became', 'because', 'become',

'becomes', 'becoming', 'been', 'before', 'beforehand', 'behind', 'being',

'below', 'beside', 'besides', 'between', 'beyond', 'bill', 'both', 'bottom',

'but', 'by', 'call', 'can', 'cannot', 'cant', 'co', 'computer', 'con',

'could', 'cry', 'de', 'describe', 'detail', 'do', 'done', 'down', 'due',

'during', 'each', 'eg', 'eight', 'either', 'eleven', 'else', 'elsewhere',

'empty', 'enough', 'etc', 'even', 'ever', 'every', 'everyone', 'everything',

'everywhere', 'except', 'few', 'fifteen', 'fill', 'find', 'fire', 'first',

 62

'five', 'for', 'former', 'formerly', 'forty', 'found', 'four', 'from',

'front', 'full', 'further', 'get', 'give', 'go', 'had', 'has', 'hasnt',

'have', 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein',

'hereupon', 'hers', 'him', 'his', 'how', 'however', 'hundred', 'i', 'ie',

'if', 'in', 'inc', 'indeed', 'interest', 'into', 'is', 'it', 'its' , 'keep',

'last', 'latter', 'latterly', 'least', 'less', 'ltd', 'made', 'many', 'may',

'me', 'meanwhile', 'might', 'mill', 'mine', 'more', 'moreover', 'most',

'mostly', 'move', 'much', 'must', 'my', 'name', 'namely', 'neither', 'never',

'nevertheless', 'next', 'nine', 'no', 'nobody', 'none', 'nor', 'not',

'nothing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one',

'only', 'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours',

'ourselves', 'out', 'over', 'own', 'part', 'per', 'perhaps', 'please', 'put',

'rather', 're', 'same', 'see', 'seem', 'seemed', 'seeming', 'seems',

'serious', 'several', 'she', 'should', 'show', 'side', 'since', 'sincere',

'six', 'sixty', 'so', 'some', 'somehow', 'someone', 'something', 'sometime',

'sometimes', 'somewhere', 'still', 'such', 'system', 'take', 'ten', 'than',

'that', 'the', 'their', 'them', 'themselves', 'then', 'thence', 'there',

'thereafter', 'thereby', 'therefore', 'therein', 'thereupon', 'these',

'they', 'thick', 'thin', 'third', 'this', 'those', 'though', 'three',

'through', 'throughout', 'thru', 'thus', 'to', 'together', 'too', 'top',

'toward', 'towards', 'twelve', 'twenty', 'two', 'un', 'under', 'until',

'up', 'upon', 'us', 'very', 'via', 'was', 'we', 'well', 'were', 'what',

'whatever', 'when', 'whence', 'whenever', 'where', 'whereas', 'whereby',

'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither',

'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'will', 'with', 'within',

'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself', 'yourselves']

* This list of stop words was taken from the following wab page -

http://xpo6.com/list-of-english-stop-words/

