ACADEMIC COLLEGE OF TEL AVIV-YAFFO

MASTER THESIS

An efficient syntax-preserving slide-based
algorithm for program slicing

Author: Supervisors:
Adi MARINOV Prof. Shmuel TYSZBEROWICZ
and Dr. Ran ETTINGER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Computer Science

March 3, 2020

https://www.int.mta.ac.il/?_ga=2.103659328.1394886794.1568532600-1166625892.1525285212

ACADEMIC COLLEGE OF TEL AVIV-YAFFO

Abstract

Computer Science
School of Computer Science

Master of Computer Science

An efficient syntax-preserving slide-based algorithm for program slicing

by Adi MARINOV

Software systems continuously evolve over the years to avoid becoming less use-
ful. However, evolution causes the code to diverge from the original design. Thus,
the internal structure may change and reduce design quality. Refactoring is one of
the major approaches that assist evolving software, yet keeping high design qual-
ity. The Extract Method refactoring enables to move a code fragment that can be
grouped together into a separated method, replacing the old code with a call to the
new method. For that, Program Slicing can be used.

In this thesis we present a backward, static, syntax-preserving slicing algorithm
that elaborates on the Static single assignment form (SSA)-based slicing algorithm
described in the PhD thesis of Ettinger. The slicing algorithm for program P in-
volves 3 steps: converting P into an SSA form; computing its flow-insensitive slice;
converting it back from SSA. The algorithm requires time polynomial in the size of
the program. We defined a new slicing algorithm that is asymptotically faster and
easier to implement than the SSA-based algorithm.

HTTPS://WWW.INT.MTA.AC.IL/?_GA=2.103659328.1394886794.1568532600-1166625892.1525285212
https://www.int.mta.ac.il/school-of-computer-science?_ga=2.103659328.1394886794.1568532600-1166625892.1525285212
https://www.int.mta.ac.il/school-of-computer-science?_ga=2.103659328.1394886794.1568532600-1166625892.1525285212

Acknowledgements

I would like to express my sincere gratitude to my thesis advisers, Prof. Shmuel
Tyszberowicz and Dr. Ran Ettinger.

The door to Prof. Tyszberowicz’s office was always open for any question or
problem I faced, even for a quick chat full of insightful comments. Dr. Ettinger
taught me never to give up until I reach perfection and our meetings always made
me extremely motivated moving forward with my research. I thank you both for
your guidance and inspiration.

Finally, I would like to thank my husband Tomer and my son Yuval for their
patience, full support and encouragement throughout the process of my research.

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Goalofthisthesis
12 Background
121 Programslicing oo L L
1.2.2 Programming notations and representation
123 Dataflowanalysis
124 Slipsandslides
125 Slidedependence
126 Dafny.
1.2.7 Static single assignment 0L
1.2.8 SSA-basedslicing L.

1.3 Contributions

2 Formal framework

21 Runningexample o o
2.2 Programming notations and representation
23 Programanalysis o L
2.3.1 Reaching definitions
232 Liveness
24 Slides
241 Slidedependencegraph
242 Pathsinaslide dependencegraph
25 VarSlides
2.5.1 VarSlide dependencegraph
2.5.2 PathsinavarSlide dependence graph
2.6 Correspondence between slideDG and varSlideDG
3 Properties of slide dependence graphs
3.1 Reaching definitionsand liveness
3.2 Reachability in the slideDG and the varSlideDG

4 A novel slide-based slicing algorithm

4.1 The algorithm
42 Examples . . .

5 Proof of correctness
51 Our algorithm

6 Conclusion

iii

14
14
16
18
18
20
21
22
23
24
24
25
26

28
28
30

35
35
35

38
38

43

A Appendix

A.1 Full definitions

All
Al2
Al3

Utility functions . .
Slides functions . .
VarSlides functions

A.14 Graphs correspondence functions
A.2 Full proofs of theorems and lemmas
Reaching Definitions and Liveness forexit
Reaching Definitions and Liveness forentry

A21
A22
A23
A24

Bibliography

Identical Skip Slips
Inverse varLabelOf

v

Chapter 1

Introduction

Software maintenance is the most expensive activity in the software lifecycle. This
process includes the following activities: adding new features and deletion of obso-
lete code (perfective), correcting errors (corrective), adapting to new environments
(adaptive), and improving code quality (preventive) [11]. The latter increases soft-
ware maintainability in order to prevent future problems. Software systems contin-
uously evolve over the years to avoid becoming less useful [15]. However, software
evolution causes the code to diverge from the original design, since code is often
modified without referring to the effect of those modifications on the design. Hence,
code eventually loses its structure and it becomes difficult to add new features or
to modify the code without introducing new bugs [15]. Thus, even when starting
with high quality of design (e.g., low coupling and high cohesion) the internal struc-
ture may change and reduce the design quality. Refactoring is one of the major
approaches that assist evolving software, yet keeping high design quality [10].

Refactoring is defined as a process for restructuring a current software system
to carry out improvements without changing its behavior. The main purpose in
refactoring is to improve the quality of a program. This is achieved by reorganizing
classes, variables, and methods across the class hierarchy to enable future adapta-
tions and extensions, so that the source code can have better structure, readability,
and understandability [18]. In addition to improving the internal structure of the
code, refactoring can provide other benefits such as removing duplication of code,
improving the design, making the code easier to understand and helping to program
faster. There are many refactoring techniques such as composing methods (i.e., ex-
tract method, inline method), moving features between objects (i.e., move method),
and simplifying method calls (i.e., rename method). The Extract Method refactoring
enables to move a contiguous code fragment into a separated method, replacing the
old code with a call to the new method. To extract a non-contiguous code fragment
to a separate method one can use Program Slicing, a technique for simplifying pro-
grams by focusing on selected aspects of semantics [13].

1.1 Goal of this thesis

There are many slicing algorithms; see, for example, [19]. Most slicing algorithms
use program-dependence graph (PDG) as its program representation. In this thesis
we use and formalize a different program representation called slide-dependence
graph (slideDG), which was introduced by Cozocaru [4]. Cozocaru showed a signif-
icant 10%-63% run-time improvement in using slideDG rather then PDG for many
algorithms such as slicing, sliding, tucking, bucketing, etc.

In this thesis we present a backward, static, syntax-preserving slicing algorithm,
which uses slideDG as its program representation. Our work elaborates on the static
single assignment form (SSA)-based slicing algorithm described in the PhD thesis

Chapter 1. Introduction 2

of Ettinger [7]. The algorithm is proved to be semantics-preserving, yet it requires
time polynomial in the size of the program. We define a new slicing algorithm that
is asymptotically faster and easier to implement than the SSA-based algorithm.

1.2 Background

In what follows, we provide some needed background on slicing.

1.2.1 Program slicing

Program slicing was invented by Mark Weiser [20] as a method for producing a
subprogram that preserves a subset of the behavior of the original program. This
sub-program is called a slice, with respect to a certain slicing criterion. A slicing crite-
rion is a pair <p, V>, where p is a certain point of interest in the program and V' is a
set of variables. For all the examples in this chapter, the point of interest is marked
as a statement number in a given program. The slice consists of all the statements
in the program (up to the specified point of interest) that directly or indirectly effect
the value of the variables given in the slicing criterion. Any slice of a given pro-
gram preserves the following property: for the initial values of each variable in the
program, if the original program terminates, the slice also terminates with the same
final values at point p of each variable in the program. In this thesis, the point of
interest p is always the end of a code-fragment of a given program which we choose
to slice from, therefore we only use a set of variables as the slicing criterion.

The leading program representation for calculating a slice is PDG, program de-
pendence graph. The PDG represents a program as a graph in which the nodes
are statements and predicate expressions and the edges incident to a node represent
either the data values on which the node’s operations depend and the control con-
ditions on which the execution of the operations depends [9]. In this thesis, we use
a variation on the PDG called SlideDG, which will be described later. Note that the
original intention of slicing was debugging [20, 21], but since then there have been
many other applications to slicing such as software maintenance, testing, program
differencing, refactoring [2].

Our first slicing example! is given in Listings 1.1-1.3 where the variables even
and odd respectively count the number of even and odd values in a given array of
integers. Note that the statements from the original program that are not in the slice
are written as an empty statement (blank line).

n this thesis, the programs are written in a deterministic variation on Dijkstra’s guarded com-
mands [6], as defined in [7].

=

— OOV NOU R WN =

Chapter 1. Introduction 3

— OOV WNONU R WN -

[—

i = 0;

even := 0;

odd := 0;

while i < a.length do
if a[i] % 2 == 0 then

even := even + 1
else

odd := odd + 1
fi;
i =1+ 1

od
LISTING 1.1: Original program P1

i = 0; 1 i := 0;
even := 0; 2
3 odd := 0;
while i < a.length do 4 while i < a.length do
if a[i] % 2 == 0 then 5 if a[i] % 2 == 0 then
even := even + 1 6
else 7 else
8 odd := odd + 1
fi; 9 fi;
i:=1i+1 10 i=1i+1
od 11 od

LISTING 1.2: A slice of P1 with V={even}

LISTING 1.3: A slice of P1 with V={odd}

Static vs. dynamic slicing An important distinction is between static and dynamic
slicing. Static slicing computes a slice with no assumptions on the program’s input.
Dynamic slicing computes a slice for a specific input [14]. In what follows we refer
to the program in Listing 1.4.

IO Ul WN -

read(n);

i = 1;

result := 1;

while i <= n do
result := result = i;
i=1i+1

od;

print(result)

LISTING 1.4: Original program P2

In static slicing, all irrelevant statements to the slicing criterion are not included in
the slice, as shown in Listing 1.5 regarding the program in Listing 1.4.

IO U WN -

Chapter 1. Introduction 4

1 read(n);

2 i =1,

3 result := 1;

4 while i <= n do

5 result := result = i;
6 i=1i+1

7 od;

8 print(result)

LISTING 1.5: A static slice of <8, result> for P2

In dynamic slicing, as shown in Listing 1.6 regarding the program in Listing 1.4, only
the relevant statements to the specific input are in the slice.

read(n);
i = 1;
result := 1;

O IONUl b WIN-

print(result)

LISTING 1.6: A dynamic slice for n=0
of <8, result> for P2

Backward vs. forward slicing Another important distinction between two possi-
ble directions of slicing is backward and forward slicing. A backward slice of a pro-
gram and a slicing criterion <p, V> includes all statements and predicates that may
have affected the value of the variables in V up to the program point p. Backward
slicing can be helpful for debugging. A forward slice of a program and a slicing cri-
terion <p, V> contains all the statements and predicates that may be affected by the
values of the variables in V from the program point p. It can be useful to determine
which statements will be affected by changing the value of the variable in the slicing
criterion, but it is usually not executable. Examples for both directions are given in
Listings 1.7 and 1.8 (both referring to original program P2 in Listing 1.4).

read (n); 1
i = 1; 2
3 result := 1;
while i <= n do 4
5 result := result = i;
i =1+ 1 6
od 7
8 print(result)
LISTING 1.7: Backward slice of <8, i> LI1STING 1.8: Forward slice of <3, result>

Syntax-preserving vs. amorphous slicing A syntax-preserving slice is constructed
by deleting all statements irrelevant to the slicing criterion from the original pro-
gram, thus preserving the original program’s syntax. By using syntax-preserving

NGOk WD -

Chapter 1. Introduction 5

slicing we can produce a non-contiguous slice, which we call a substatement of the
original program. In contrast, an amorphous (semantics-preserving) slice does not
have to preserve the program’s syntax, and can produce a smaller slice by changing
some of the program’s statements yet still preserving the original program’s behav-
ior [12].

read (n); 1 read(n);
if n >= 0 then 2 if n < 0 then
Skip 3 n:=n * —1
else 4 fi,;
n:=n * —1 5 print(n)
fi ’ LISTING 1.10: Amorphous slice of <6, n> for P3
print(n)

LISTING 1.9: Original program P3
In this thesis we consider syntax-preserving, backward, static slicing algorithm.

1.2.2 Programming notations and representation

Our input program for the slicing algorithm is a compound statement. Each state-
ment in our language is one the following:

¢ Assignment (LHS, RHS): Two sequences, one for the left-hand side of the as-
signment and another for the right-hand side of the assignment, used to sup-
port multiple assignment.

¢ Sequential Composition (51, S2): Two statements executed one after the other.

¢ If (BoolExp, Then, Else): Boolean expression, a statement for the "then" case
and a statement for the "else" case.

* Do (BoolExp, LoopBody): Boolean expression and a statement for the loop
body.

¢ Skip: An empty statement.

Formal declarations for the statements in the language are given in Chapter 2.

1.2.3 Data flow analysis

Data flow analysis is a form of static program analysis and is a process of collecting
run-time information about data in programs without executing them [22, 17]. The
program representation with data-flow problems is usually the control flow graph
(CFG) [3].

Definition 1 (CFG). Control flow graph is a program representation (in the form of a
directed graph) of all the possible program’s paths during its execution. Each node
of the CFG represent a program statement with two additional nodes, entry and
exit. Each edge of the CFG (11, n), represent potential control flow from n; to ny.
Normal nodes have one successor, the exit node has no successors, and a predicate
node corresponding to a conditional or a loop condition has two successors, where
each edge is labeled True or False. The root of the CFG is the entry node, which is a
predicate that has the exit node as its false successor.

An example for a CFG is shown in Figure 1.1.

Chapter 1. Introduction 6

True

Def: i Def: result

Def: result Def: i
Use:result , i Use:i

FIGURE 1.1: CFG of P2 (from Listing 1.4). Final-def (Definition 2) and
final-use (Definition 3) variable references are underlined.

Definition 2 (Final-def node). Given a program S, a CFG node n and a variable v, n is
considered a final-def node for v iff v is defined in n and there exists a path from n to the exit

free of definitions of v.

Definition 3 (Final-use node). Given a program S, a CFG node n and a variable v, n is
considered a final-use node for v iff v is used in n and each path from n to the exit is free of
definitions of v.

We now describe two classical data-flow analyses: reaching definitions analysis and
live-variable analysis.

Reaching definitions analysis

Reaching definitions analysis is a data-flow analysis of computing the set of defi-
nitions that reach a point in the program (where a definition is a pair of (variable,
statement number)). Let v be a variable in the left-hand side of an assignment in
a given program point p. This assignment may reach a program point p’ if v is de-
fined at p, used at p’, and there is a CFG path from p to p’ free from definitions of v.
The set of definitions that reach the exit of a statement S is calculated by: RD(S) =
(RDin(S) \ Kill(S)) U Gen(S), where RDj,, is the set of definitions at the entry of S, Kill
is the set of definitions removed by S, and Gen is the set of definitions generated by
S. Reaching definitions information is usually given by the pair (RDj,, RDyyt) which
holds the reaching definitions at the entry of a program and at the end of a program,
respectively. In Listing 1.4, RDyy(5) is calculated using:

e RD;n(5) ={(n, 1), (i, 2), (result, 3), (result, 5), (i, 6)}
e Kill(5) = {(result, 3), (result, 5)}
e Gen(5) = {(result, 5)}

Therefore: RDou(5) = {(n, 1), (i, 2), (result, 5), (i, 6)}, where each definition is given
by the pair (variable, statement number).

Chapter 1. Introduction 7

Live-variable Analysis

Live-variable analysis is another data-flow analysis computed in the direction op-
posite to the flow of control in a program (backward analysis) [1]. In live-variable
analysis, a variable v is considered live at the exit of a program point p if there exists
a CFG path (that does not define v) from p to a use of v [17]. Otherwise, v is con-
sidered dead at p. The set of variables live at the entry of a statement S is calculated
by: LVentry(S) = (LVexit(S) \ def(S)) U use(S), where LV, is the set of variables live
at the exit of S, def is the set of variables defined in S, and use is the set of variables
whose values may be used in S prior to any definition of the variable. In Listing 1.4,
LVentry(5) is calculated using:

® [Veit(5) = {result, i}

e def(5) = {result}

e use(5) = {result, i}
Thus: LVentry(5) = {result, i}.

In this thesis, we use both reaching definitions and live-variable analyses for the
proof of our slicing algorithm.

1.2.4 Slips and slides

Our algorithm represents a statement by a set of slides. Before we show our algo-
rithm, we present two terms that are used in the algorithm by means of an example
slip and slide. Let S be the statement: “if num > 0 then pos := 1 else pos := 0 fi”. The
slips of S are: “pos := 1", “pos := 0”, and “if num > 0 then pos := 1 else pos := 0 fi”, while
the slides of S are: “if num > 0 then pos := 1 fi” and “if num > 0 then Skip else pos := 0
£

A slip is any part of a statement which is in itself a statement. A slide is an assign-
ment with all the control-statements (if, do) and sequential-compositions in which
it is contained. In case of a multiple-assignment, each assignment (with the relevant
control-statements) is considered a slide. In reference to a program representation of
a tree, a slip is a subtree and a slide is a path from the root to a certain leaf (described
in Chapter 2). For further examples, let us refer back to P1 in Listing 1.1. Some slips
there are: “odd := 0”7, “i:=i+ 1", and also “if a[i] % 2 == 0 then even := even + 1 else odd
‘=o0dd + 1 fi”; and some slides are given in Listings 1.11-1.13.

1 Skip;
2 Skip;
3 odd := 0;
4 Skip
5

6

7

8

9

10

11

LISTING 1.11: Slide example 1

==

— OOV NNC R WN -

Chapter 1. Introduction 8

Skip; 1 Skip;
Skip; 2 Skip;
Skip; 3 Skip;
while i < a.length do 4 while i < a.length do
Skip; 5 if a[i] % 2 == 0 then
6 even := even + 1
7 else
8 Skip;
9 fi;
i=1i+1 10 Skip
od 11 od
LISTING 1.12: Slide example 2 LISTING 1.13: Slide example 3

We also define the union of slides into a statement. Given a statement S and two
slides S, and S, of S, each program point in the resulting statement contains the
statement that is not Skip from the corresponding programs points in S, and S,,. In
the case that both corresponding programs points in S,;, and S, contains Skip, the
resulting statement also contains Skip. An example is given in Listing 1.14 for the
union of the slides from Listings 1.11 and 1.12.

Skip;

Skip;

odd := 0;

while i < a.length do
Skip;

O 0N ONUl = WN -

10 i=1i+1
11 od

LISTING 1.14: Union of slides from Listings 1.11 and 1.12

Formal definitions of slip and slide are given in Chapter 2. In this thesis we use slides
as a program representation for our algorithm, and both slips and slides in the proof
of our algorithm.

1.2.5 Slide dependence

The algorithm we have defined is slide-based and uses a representation of a program
called a slide-dependence graph (slideDG) which was introduced by Cozocaru [4].
For the following definitions we use two terms:

* For a slide s and a variable v we say that v is defined in s if v is on the left-hand
side of the assignment in s.

¢ For a slide s and a variable v we say that v is used in s if v is on the right-hand
side of the assignment in s, or is used in one of the control-statements of s.

Definition 4 (Slide Dependence). There is a slide dependence due to variable v between
two slides S, and S, of CFG nodes m and n respectively, iff there is a definition of v in m
that reaches any node n' € S, and v is used in n’.

Chapter 1. Introduction 9

Definition 5 (SlideDG). A Slide-dependence graph (SlideDG) is a program representation
(in the form of a directed graph) with slides as nodes, each slide S, corresponds to a CFG
node n, and there is an edge from slide S, to slide Sy, iff S, is slide-dependent on S,,.

A formal definition of slide-dependence and slide-dependence graph is given in Chap-
ter 2, and an example? is given in Figure 1.2.

olfc
o

FIGURE 1.2: SlideDG of P1 (from Listing 1.1).

Definition 6 (Final-def Slide). A slide S, is called a final-def slide of a statement S and a
set of variables V iff the assignment of S, is to a variable v such that vEV, performed at a
CFG node n, and is reaching the exit of S.

In Figure 1.2 and for V={even}, slides 2 and 6 are the final-def slides.

1.2.6 Dafny

The formal framework of this thesis is written in Dafny (1.9.9), a programming lan-
guage that verifies that the programmer writes correct code with no run-time errors
using a verifier. The verifier is used to verify the correctness of the program, while
the programmer is writing the code [16]. The verification relies on program specifi-
cation and annotations such as pre- and post-conditions, loop invariants, assertions,
and lemmas.

1.2.7 Static single assignment

The static single assignment (SSA) form, introduced by Cytron et al., is a program
representation in which every variable is assigned only once and defined before it
is used [5]. Usually, a program is converted to SSA form in order to perform some
sort of a program analysis, and then converted back to its original form. In Cytron’s
approach there are two steps in order to convert a program S and a set of variables V
into an SSA form: Inserting assignments called ®-functions to certain points in the
program (control-flow merge points), where the operands to a ®-function indicate
which assignments to a certain variable v reach the merge point. Then, renaming
each instance of v € V to a new name v; (and increasing i for each instance). In our
simple language, instead of using ®-functions (which are not executable), they can
be separated into two assignments. For an IF statement, we use an assignment at the
end of each branch, and for a DO statement we use an assignment before the loop

2In this thesis, the slide-dependence graph does not include self edges, since their presence has no
influence on the results of our algorithm.

Chapter 1. Introduction 10

and at the end of its body. Examples are given in Listings 1.15, 1.16, and 1.17. The
algorithm to converting a program into an SSA form and back from SSA used in this
thesis was presented by Ettinger [7] and will be demonstrated next.

1 read(x);
2 if x > 0 then
3 y =1
4 else
5 y = 2
6 fi;
7 print(y)
LISTING 1.15: A simple program
1 read(x1); 1 read(x1);
2 if x; > 0 then 2 if x; > 0 then
3 y2 =1 3 y2 = 1;
4 else 4 Ya 1= 2
5 Y3 = 2 5 else
6 fi; 6 y3 = 2;
7 Ya = ©(y2,y3); 7 Ys = Y3
8 print(ys) 8 fi;
LISTING 1.16: SSA form 9 print(ys)

LISTING 1.17: SSA form used in this thesis

1.2.8 SSA-based slicing

An SSA-based slicing algorithm was presented and proved to be semantics-preserving
by Ettinger [7]. The algorithm first converts a statement into SSA form. Then, it
computes the flow-insensitive slice on a given set of variables (as explained next).
Finally, it returns back from SSA resulting in a flow-sensitive slice. The algorithm
has the complexity of O(n3), where 7 is the number of statements in the program.
We demonstrate the three steps of the algorithm using the example in Listing 1.18.

1 1 := 0;

2 sum := 0;

3 prod := 1;

4 while i < a.length do
5 sum := sum + ali];
6 prod := prod + al[il];
7 i=1+1

8 od

LISTING 1.18: Original statement S

Translate a statement into SSA form

For the first step, given a statement S and a set of variables V' the algorithm translates
S into SSA form, while keeping a mapping of each variable and its set of instances. In
our example, the statement S’ in Listing 1.19 is the SSA form result of the statement
S in Listing 1.18.

Chapter 1. Introduction 11

1 i1 := 0;

2 sum2 := 0;

3 prod3 := 1;

4 i4, sum4, prod4 := il, sum2, prod3;
5 while i4 < a.length do

6 sumb := sum4 + a[i4];

7 prod6 := prod4 + al[i4];

8 i7 = i4 + 1;

9 i4, sum4, prod4 := i7, sum5, prodé
10 od

LISTING 1.19: S’ := ToSSA(S, V), where V={sum}

Compute the flow-insensitive slice

For the second step, given a statement S and a set of variables V, the algorithm com-
putes the smallest possible slide-independent superset V* of V, and then computes
the union of slides of S on V*. In our example, the statement SV’ in Listing 1.20 is
the flow-insensitive slice of the statement S” in Listing 1.19 on V', where V’ consists
of the live-on-exit instance of each variable in V. Note that in SSA form each variable
has at most one live instance in any point in the program.

il := 0;

sum2 := 0;

i4, sum4 := il , sum2;

while i4 < a.length do
sumb := sum4 + a[i4];

i7 = i4 + 1;
i4, sum4 := i7, sumb
od

SOOI Ul b WN -

—_

LISTING 1.20: SV’ := ComputeFISlice(S’, V'),
where V’'={sum4}

Translate a statement back from SSA form

For the third and final step, given a statement S, the algorithm translates S back from
SSA form, while using the previous mapping of each variable to its set of instances.
In our example, the statement res in Listing 1.21 is the translated result of the state-
ment SV’ in Listing 1.20.

i = 0;

sum := 0;

while i < a.length do
sum := sum + al[i];

IO Ul WD

od
LISTING 1.21: res := FromSSA(SV’, V)

Chapter 1. Introduction 12

To and from SSA specification

In order to succeed in the proof of correctness of our algorithm, we formulated a
formal functional specification for both the To-SSA and From-SSA algorithms, as
follows:

RemoveEmptyAssignments (Rename(S’, XLs, X, globS)) =S

where:

S: The original statement.

S’: The SSA version of S.

X: A sequence containing all variables defined in S.

XLs: A mapping between each variable from X to its set of instances.
globS: The set of glob(S) (used to verify that the mapping is valid).

Rename: A function that renames each instance in a given statement to its
original variable. In the case where an assignment was renamed into a self-
assignment, that assignment is replaced with an empty-assignment.

RemoveEmptyAssignments: A function that removes all empty assignments in a
given statement.

However, this specification is bounded by two preconditions:

1.

No self assignments: If there is a self assignment in S, for example x := x, its
SSA version in S’ can be x1 := x2. According to our specification, the Rename
function renames the assignment back to x := x and replaces the self assignment
with an empty assignment. Then, the RemoveEmptyAssignments function
removes the empty assignment and our specification would not hold.

No empty assignments: If there is an empty assignment in S, its SSA version
in S” would still be an empty assignment. According to our specification, the
RemoveEmptyAssignments function removes the assignment and our specifi-
cation would not hold.

For example, S is the statement from Listing 1.18, S” is the statement from List-
ing 1.19, X is the sequence of variables [i, sum, prod], and XLs is the mapping of
variables [{il, i4, i7}, {sum2, sum4, sum5}, {prod3, prod4, prod6}]. When we use
Rename on SV’ from Listing 1.20, we get the statement in Listing 1.22. Then, when
we use RemoveEmptyAssignments on the result of Rename on SV’ we get res from
Listing 1.21.

i = 0;

sum := 0;

[1 = [1I;

while i < a.length do
sum := sum + al[i];

O OO NONUl s WN -

=

LISTING 1.22: Rename(SV’, XLs, X)

Chapter 1. Introduction 13

Formal definitions of both Rename and RemoveEmptyAssignments are given in Ap-
pendix A.1.4.

1.3 Contributions
The main contributions of this thesis are as follows:

1. It formalizes the definitions of slide-dependence graph and varSlide-dependence
graph, and the connection between the two.

2. It provides a functional specification for the transition of a program into SSA,
the computation of its flow-insensitive slice, and the transition back from SSA.

3. It proves that any slicing algorithm that meets the requirements listed above
is syntax-preserving, in particular the SSA-based algorithm presented in 1.2.8,
thus compatible to code-motion refactoring.

4. It provides a new, efficient, semantics- and syntax-preserving slicing algo-
rithm.

Thesis outline The rest of the thesis is structured as follows: Chapter 2 provides
a formal framework for this thesis. Chapter 3 elaborates on the correspondence be-
tween the definitions in the formal framework. Chapter 4 presents our slide-based
slicing algorithm. In Chapter 5 we provide the syntax-preservation proof of our
algorithm. Chapter 6 concludes the thesis and suggests ideas for future work.

14

Chapter 2

Formal framework

In this chapter, we provide the formal framework for our thesis. Here we formally
define the slide-dependence graph and varSlide-dependence graph of a program.

2.1 Running example

We illustrate the formal framework of this thesis and the correctness proof of our
slicing algorithm (Chapter 5) using the example in Listing 2.1 that calculates the
sum of numbers in a given non-empty array, finds its max, and checks whether the
array is in a strictly ascending order. The example is an adaptation of an example
presented in the VerifyThis competition'.

1 max := a[0];

2 sum := a[0];

3 i :=1;

4 count := 0;

5 while i < a.length do
6 if a[i] > max then
7 max := al[i]

8 else

9 skip

10 fi;

11 sum := sum + ali];
12 if max > a[i—1] then
13 count := count + 1
14 else

15 skip

16 fi;

17 i=1i+1

18 od;

19 if count + 1 == a.length then
20 isSorted := true

21 else

22 isSorted := false
23 fi

LISTING 2.1: Original program S

1ht’cps: / /www.pm.inf.ethz.ch/research/verifythis.html

Chapter 2. Formal framework 15

FIGURE 2.1: SlideDG of S from Listing 2.1

1 maxl := a[0];

2 sum2 := a[0];

3 i3 = 1;

4 countd := 0;

5 max5, sumb5, i5, count5 := maxl, sum2, i3, count4;
6 while i5 < a.length do

7 if a[i5] > max5 then

8 max7 := al[ib];

9 max6 := max7

10 else

11 max6 := maxb

12 fi;

13 sum8 := sumb + a[i5];

14 if max6 > a[i5 —1] then

15 countl0 := countbs + 1;

16 count9 := countl0

17 else

18 count9 := countb

19 fi;

20 ill := i5 + 1;

21 max5, sumb5, i5, count5 := max6, sum8, ill, count9
22 od;

23 if count5 + 1 == a.length then

24 isSorted13 := true;

25 isSorted12 := isSorted13
26 else

27 isSorted14 false;

28 isSorted12 := isSortedl4
29 fi

LISTING 2.2: SSA Version of S from Listing 2.1

Chapter 2. Formal framework 16

isSorted,,

FIGURE 2.2: VarSlideDG of Listing 2.2.

2.2 Programming notations and representation

As mentioned in the previous chapter, our input program is a compound statement.
The declarations in Dafny for the statements in the language are as follows:

datatype Statement =
Assignment (LHS: seq<Variable >, RHS: seq<Expression>)
| SeqComp(S1: Statement, S2: Statement)
| IF (B0: BooleanExpression, Sthen: Statement, Selse: Statement)
| DO(B: BooleanExpression, Sloop: Statement)
| Skip
| LocalDeclaration(L: seq<Variable>, S0: Statement)
| Live(L: seq<Variable>, SO: Statement)
| Assert(B: BooleanExpression)

where:

type Variable = string

type Expression = (State —> Value, set<Variable>, string)
type BooleanExpression = (State —> bool, set<Variable >)
datatype Value = Int(i: int) | Bool(b: bool)

type State = map<Variable, Value>

The input program language for the SSA-based algorithm uses the entire definition
of Statement, whereas in this thesis we only use Assignment, SeqComp, IF, DO, and
Skip as our core language.

We represent a statement as a tree, where leaves represent assignments or skips
and inner nodes represent composite statements. A label is a sequence of numbers
representing a path from the root to a certain statement in the tree. In Dafny we
define a label as a sequence of branches, where a Branch is the number 1 or 2. An
example for the representation of a statement as a tree is shown in Figure 2.3. The
declaration in Dafny is the following:

Chapter 2. Formal framework 17

newtype Branch = b: int | 1 <b <2
type Label = seq<Branch>

)

Q.
[1] [2]
Cmax:= 3l Q.

[21] [2,2]

[221] [2,2,2]

[2,2,2,1] [2,2,2,2]

[2.2,2,2,1] 12,2,2,2,2]
while i<a.length if count+1 == a.length
[2,2,2,2,21] [2,2,2,2,2,2]
° isSorted := true isSorted := false
(2222111 [222.2,1,1] 2,2,2,2,1,1,2]

[2,2,2,2,1,1,2,2]

2,2,2,2,1,1,1,1] [22,2211,13] [2,2,2211,21]

[2,2,2,2,1,1,2,2,1] [2,2,2,2,1,1,2,2,2]
[2,2,2,2,1,1,2,2,1,1] [222,2,1,1,2,2,1,7]

FIGURE 2.3: Representation of the program in Listing 2.1

We can use the definition of label when defining a slip of a statement. The formal
definition of slip in Dafny is described below. The slipOf function uses a number
of predicates defined in Appendix A.1.1. Valid checks if S is a valid statement (for
example, |ILHS| = IRHSI if the statement is an assignment); Core checks if S is
either Assignment, SeqComp, IF, DO, or Skip; and ValidLabel checks if I is a valid
label in the statement S.

function slipOf(S: Statement, 1: Label): Statement
requires Valid(S) A Core(S)
requires ValidLabel(1l, S)
ensures Valid (slipOf(S, 1)) A Core(slipOf(S, 1))
decreases |1/

if 1 =[] then S
else

Chapter 2. Formal framework 18

match S {

case SeqComp(S1,S52) =
if 1[0] =1 then slipOf(S1, 1[1..])
else slipOf(S2, 1[1..])

case IF(BO,Sthen, Selse) =
if 1[{0] =1 then slipOf(Sthen, 1[1..])
else slipOf(Selse, 1[1..])

case DO(B,S1) =
slipOf(S1, 1[1..])

2.3 Program analysis

In this section we provide our formal definitions of reaching definitions and live-
variable analysis presented in Chapter 1.

2.3.1 Reaching definitions

The formal definition of reaching definitions in Dafny is described below. We denote
the set of definitions that reach the beginning of a statement as reaching definitions in,
and the set of definitions that reach the end of a statement as reaching definitions out.

Reaching definitions in

function ReachingDefinitionsIn(S: Statement, 1: Label):
set <(Variable, Label)>
requires Valid(S) A Core(S)
requires ValidLabel(l, S)

ReachingDefinitionsInRec(S, 1, S, [], {})

function ReachingDefinitionsInRec (slipOfS: Statement,
11: Label, S: Statement, 12: Label,
rdIn: set<(Variable, Label)>): set<(Variable, Label)>
requires Valid(S) A Core(S)
requires Valid (slipOfS) A Core(slipOfS)
requires ValidLabel (11, slipOfS)
requires ValidLabel (12, S)

if 11 = [] then
if IsDO(slipOfS) then
rdIn + ReachingDefinitionsOutRec (S, {}, 12+[1])
else rdIn
else
assert —IsAssignment(slipOfS) A —IsSkip (slipOfS);
match slipOfS {
case SeqComp(S1,S52) =
if 11[0] = 1 then ReachingDefinitionsInRec(S1, 11[1..],
S, 12+[1], rdIn)
else ReachingDefinitionsInRec(S2, 11[1..],
S, 12+[2], ReachingDefinitionsOutRec(S, rdIn, 12+[1]))
case IF(BO,Sthen, Selse) =
if 11[0] = 1 then ReachingDefinitionsInRec(Sthen, 11[1..],

Chapter 2. Formal framework

19

S, 12+[1], rdIn)
else ReachingDefinitionsInRec(Selse, 11[1..],
S, 12+[2], rdIn)
case DO(B,Sloop) =
ReachingDefinitionsInRec (Sloop, 11[1..],

S, 12+[1], rdIn + ReachingDefinitionsOutRec(S, {},

}

function ReachingDefinitionsInFor(S: Statement, 1: Label,
v: Variable): set<(Variable, Label)>
requires Valid(S) A Core(S)
requires ValidLabel(1l, S)

var rdIn := ReachingDefinitionsIn(S, 1);
set p | pin rdln A p.0 =v

Reaching definitions out

function ReachingDefinitionsOut(S: Statement, 1: Label):
set <(Variable, Label)>
requires Valid(S) A Core(S)

{
var rdIn := ReachingDefinitionsIn(S, 1);
ReachingDefinitionsOutRec (S, rdIn, 1)

}

function ReachingDefinitionsOutRec(S: Statement,

12+[1]))

rdIn: set<(Variable, Label)>, 1: Label): set<(Variable, Label)>

requires Valid(S) A Core(S)
requires ValidLabel(1l, S)

match slipOf (S, 1) {

case Assignment(LHS,RHS) = RDKill (LHS, rdIn) + RDGen(LHS, 1)

case Skip = rdIn

case SeqComp(S1,52) =
ReachingDefinitionsOutRec (S,

ReachingDefinitionsOutRec (S, rdIn, 1+[1]), 1+[2])

case IF(BO,Sthen, Selse) =
ReachingDefinitionsOutRec (S, rdIn, 1+[1]) +
ReachingDefinitionsOutRec (S, rdIn, 1+[2])

case DO(B,Sloop) =
rdIn + ReachingDefinitionsOutRec (S, {}, 1+[1])

}

}

function ReachingDefinitionsOutFor(S: Statement, 1: Label,

v: Variable): set<(Variable, Label)>
requires Valid(S) A Core(S)

{
var rdOut := ReachingDefinitionsOut(S, 1);
set p | p in rdOut A p.0 =v

}

Kill and Gen functions

Chapter 2. Formal framework 20

function RDKill(V: seq<Variable>, rdIn: set<(Variable, Label)>):
set <(Variable , Label)>

{
if V=[] then rdIn
else
var s := set p | p in rdIn A V[0] =p.0;
RDKill(V[1..], rdIn — s)
)

function RDGen(V: seq<Variable>, 1: Label): set<(Variable, Label)>
{

set v | vinV e (v, 1)

}

For brevity, we denote the ReachingDefinitionsIn function by RD_IN(S, 1), ReachingDef-
initionsInFor function by RD_IN_FOR(S, 1, v), ReachingDefinitionsOut function by
RD_OUT(S, 1), and ReachingDefinitionsOutFor function by RD_OUT_FOR(S, , v).
For the following examples on program S in Listing 2.1, we denote the labels
in the sets of RD_IN, RD_IN FOR, RD_OUT and RD_OUT _FOR as the number of
statement in the given program:
e RD_IN(, [2,2,2,2]) = {(max, 1), (sum, 2), (i, 3), (count, 4)}.

e RD_IN_FOR(S, [2,2,2,2], count) = {(count, 4)}

e RD_OUT(S, []) = {(max, 1), (sum, 2), (i, 3), (count, 4), (max, 7), (sum, 11), (count,
13), (i, 17), (isSorted, 20), (isSorted, 22)}.

e RD_OUT_FOR(S, [], count) = {(count, 4), (count, 13)}.

2.3.2 Liveness

The formal definition of liveness anaylsis in Dafny is described below. We denote
the set of variables that are live at the beginning of a statement as live on entry, and
the set of variables that are live at the end of a statement as live on exit.

Live on entry

function LiveOnEntry(S: Statement, 1vExit: set<Variable >):
set<Variable >
requires Valid(S) A Core(S)

{
match S |{
case Assignment(LHS,RHS) = LVKill(LHS, liveOnExit) + LVGen(RHS)
case Skip = IvExit
case SeqComp(S1,52) = LiveOnEntry(S1, LiveOnEntry(S2, lvExit))
case IF(B0O,Sthen, Selse) = LiveOnEntry(Sthen, IvExit) +

LiveOnEntry (Selse , 1vExit) + BO.1

case DO(B,Sloop) = IvExit + LiveOnEntry(Sloop, {}) + B.1

}

Kill and Gen functions

function LVKill(V: seq<Variable>, lvExit: set<Variable >):
set<Variable>

Chapter 2. Formal framework 21

{
if V=[] then 1vExit
else
var s := set v | v in lvExit A V[0] = v;
LVKill(V[1..], 1lvExit — s)
}

function LVGen(E: seq<Expression>): set<Variable>

{
GetRHSVariables (E)

}
The function GetRHSVariables can be found in Appendix A.1.1.

Live on exit

function LiveOnExit(S: Statement, 1vExit: set<Variable >,
I: Label): set<Variable>
requires Valid(S) A Core(S)
requires ValidLabel(1l, S)
{
if 1 = [] then IvExit else
assert —IsAssignment(S) A —IsSkip(S);
match S {
case SeqComp(S1,S52) =
if 1[0] = 1 then
LiveOnExit(S1, LiveOnEntry(S2, lvExit), 1[1..])
else
LiveOnExit(S2, lvExit, 1[1..])
case IF(BO,Sthen, Selse) =
if 1[0] = 1 then
LiveOnExit(Sthen, 1vExit, 1[1..])
else
LiveOnExit(Selse, lvExit, 1[1..])
case DO(B, Sloop) =
LiveOnExit(Sloop, IvExit +
LiveOnEntry (Sloop, IvExit), 1[1..])

For brevity, we denote the LiveOnEntry function by LV_ENTRY(S, 1IvExit) and
LiveOnExit function by LV_EXIT(S, IvExit, 1).

For example:

e LV_ENTRY(S, {max5, sumb5, i5, countb, isSorted12}) = {}.

e LV_EXIT(S, {max5, sumb, i5, count5, isSorted12}, []) = {max5, sumb5, i5, count5,
isSorted12}.

e LV_EXIT(S, {max5, sumb, i5, count5, isSorted12}, [2,2,2,2,1]) = {max5, sumb, i5,
count5}.

2.4 Slides

We recall the definition of a slide from Chapter 1 as an assignment with all the
control-statements (if, do) and sequential-compositions in which it is contained. The
formal definition of Slide is as follows, where Label is the label of the assignment

Chapter 2. Formal framework 22

in the slide, and Variable is the variable defined in the slide. For that we use two
accessors, SlideLabel and SlideVariable, which can be found in Appendix A.1.1.

type Slide = (Label, Variable)

2.4.1 Slide dependence graph

A formal definition of slide dependence in Dafny is described below. The Slid-
eDependence predicate uses SlidesOf which returns all the slides of a statement; def
which returns the set of variables defined in a specific statement; SlideLabels which
returns a set of the slide’s label and all the labels of the control-statements (if, do)
and sequential-compositions in which it is contained; UsedVars which returns all
the variables used for a specific label and statement; and ReachingDefinition which
checks if a certain pair of (variable, labell) is in RD_IN(S, label2). Full definitions
can be found in Appendix A.1.2.

predicate SlideDependence(Sm: Slide, Sn: Slide, S: Statement)
requires Valid(S) A Core(S)
requires Sm in SlidesOf(S, def(S)) A Sn in SlidesOf (S, def(S))

{

var v := SlideVariable (Sm);

41 e 1 in SlideLabels(Sn, S) A

v in UsedVars(S, 1) A ReachingDefinition(S, SlideLabel(Sm), 1, v)
}

predicate ReachingDefinition(S: Statement, 11: Label, 12: Label,
v: Variable)
requires Valid(S) A Core(S)
requires ValidLabel(l1, S) A ValidLabel(12, S)
{
(v, 11) in ReachingDefinitionsIn (S, 12)
}

For example, the variable max is defined in slide 1, used in the label / =[2,2,2,2,1,1,1,1]
which is one of the labels of slide 7, and (max, [1]) is in RD_IN(S, /), therefore slide 7
is slide-dependent on slide 1.

The formal definition of a slide-dependence graph is as follows, where Statement is
the statement represented by the graph; set<Slide> is the set of slides of the graph
(nodes); and map<Slide, set<Slide>> is the mapping between each slide to its prede-
cessors (edges). For that we use three accessors: SlideDGStatement, SlideDGSlides and
SlideDGMap, which can be found in Appendix A.1.2.

type SlideDG = (Statement, set<Slide >, map<Slide , set<Slide >>)

function SlideDGOf(S: Statement): SlideDG
requires Valid(S) A Core(S)
{
var slides := SlidesOf (S, def(S));
var m := map s | s in slides e
SlideDependencePredecessorsOf(s, S);

(S, slides, m)
)

function SlideDependencePredecessorsOf(Sn: Slide, S: Statement):
set<Slide>
requires Valid(S) A Core(S)

Chapter 2. Formal framework 23

requires Sn in SlidesOf(S, def(S))
{

set Sm | Sm in SlidesOf(S, def(S)) A SlideDependence(Sm, Sn, S)
}

2.4.2 Paths in a slide dependence graph

We describe a path in a slideDG between two slides as SlideDGPath with the follow-
ing definition:

datatype SlideDGPath = Empty | Extend(SlideDGPath, Slide)

Then, we describe the reachability between two slides as SlideDGReachable with
the following definition:

predicate SlideDGReachable (slideDG: SlideDG, from: Slide,
to: Slide, slides: set<Slide >)
{
d via: SlideDGPath e
SlideDGReachableVia (slideDG, from, via, to, slides)
}

predicate SlideDGReachableVia(slideDG: SlideDG, from: Slide,
via: SlideDGPath,
to: Slide, slides: set<Slide >)
decreases via

match via
case Empty = from = to
case Extend(prefix, n) = n in slides A
to in SlideDGPredecessors(slideDG, n) A
SlideDGReachableVia (slideDG, from, prefix, n, slides)
}

function SlideDGPredecessors(slideDG: SlideDG, n: Slide):
set<Slide >
requires n in SlideDGMap (slideDG)

{
SlideDGMap (slideDG) [n]

}

Another important distinction we make is between finalDefSlides and the rest.
Given a statement S and its slide-dependence graph slideDG, it returns the set of
slides that are reaching to the exit of S.

function FinalDefSlides(S: Statement, V: set<Variable>): set<Slide>
requires Valid(S) A Core(S)
{
var slideDG := SlideDGOf(S);
set slide | slide in SlideDGSlides (slideDG) A
SlideVariable (slide) in V A
slide in FinalDefSlidesOfVariable (S, SlideVariable(slide))
}

function FinalDefSlidesOfVariable(S: Statement, v: Variable):
set<Slide >
requires Valid(S) A Core(S)

{
var slideDG := SlideDGOf(S);

Chapter 2. Formal framework 24

var rdIn := set v | v in def(S) e (v, []);
var rdOutv := set pair |

pair in ReachingDefinitionsOutRec(S, rdIn, []) A pair.0 = v;
var slidesRdOutv := set pair | pair in rdOutv e

(pair.1, pair.0);
set slide | slide in slidesRdOutv * SlideDGSlides (slideDG)
}

For example, FinalDefSlides(S, {isSorted}) is the set of slides {20, 22}.
We derive the following definition from reaching definitions and final-def slides:

Definition 7. The set of slides RD_OUT(S, []) is the set of all the final-def slides of S.

2.5 VarSlides

The program representation we use for the SSA form of a program is the VarSlide-
Dependence graph. Similar to a Slide-Dependence graph, the VarSlide-Dependence graph
uses VarSlides as nodes. The formal definition of VarSlide is as follows, where Vari-
able is the variable defined in the varSlide, and VarSlideTag is the tag of the varSlide,
regular when Variable is defined only once and phi when Variable is defined twice
(control-flow merge point). For that we use two accessors, VarSlideVariable and
VarSlideTag, which can be found in Appendix A.1.3.

datatype VarSlideTag = Phi | Regular
type VarSlide = (Variable, VarSlideTag)

Note that a varSlide does not contain a label, therefore if a varSlide is regular it
has only one valid label in a given statement, and if a varSlide is phi it has two valid
labels in the statement.

2.5.1 VarSlide dependence graph
The definitions of varSlide dependence and varSlide-dependence graph are as follows:

Definition 8 (VarSlide Dependence). There is a varSlide dependence between two varSlides
Sm and Sy, iff there is a variable v defined in S,, and used in S,.

Definition 9 (VarSlideDG). A VarSlide-dependence graph (VarSlideDG) is a program rep-
resentation (in the form of a directed graph) with varSlides as nodes and there is an edge
between varSlides S,, and S, iff Sy, is varSlide-dependent on S,,.

A formal definition of varSlide dependence in Dafny is described below. The
VarSlideDependence predicate uses VarSlideLabels which returns a set of the varSlide’s
label and all the labels of the control-statements (if, do) and sequential-compositions
in which it is contained. Full definition can be found in Appendix A.1.3.

predicate VarSlideDependence(Sm: VarSlide, Sn: VarSlide,
S: Statement)
requires Valid(S) A Core(S)
{
var v := VarSlideVariable (Sm);
31 e 1 in VarSlideLabels(Sn, S) A v in UsedVars(S, 1)

}

For example, the variable max5 is defined in the varSlide of max5 and used in the
label I = [2,2,2,2,1,2,1,1,1,1,1] of the varSlide of max7, therefore the varSlide of max7
is varSlide-dependent on the varSlide of max5.

Chapter 2. Formal framework 25

The formal definition of varSlide-dependence graph is as follows, where Statement
is the statement represented by the graph, set<VarSlide> is the set of varSlides of
the graph (nodes), and map<VarSlide, set<VarSlide>> is the mapping between each
varSlide to its predecessors (edges). For that we use three accessors, VarSlideDGState-
ment, VarSlideDGVarSlides and VarSlideDGMap, which can be found in Appendix A.1.3.
The VarSlideDGOf function uses VarSlidesOf which returns all the varSlides of a
statement, and can also be found in Appendix A.1.3.

type VarSlideDG = (Statement, set<VarSlide >, map<VarSlide,
set<VarSlide >>)

function VarSlideDGOf(T: Statement): VarSlideDG
requires Valid(T) A Core(T)
{
var varSlides := VarSlidesOf (T, def(T));
var m := map s | s in varSlides e
VarSlideDependencePredecessorsOf (s, T);

(T, varSlides, m)
}

function VarSlideDependencePredecessorsOf(Sn: VarSlide,
T: Statement): set<VarSlide>
requires Valid(T) A Core(T)
requires Sn in VarSlidesOf(T, def(T))

set Sm | Sm in VarSlidesOf (T, def(T)) A
VarSlideDependence (Sm, Sn, T)

2.5.2 Paths in a varSlide dependence graph

We express the existence of a path in varSlideDG between two varSlides as VarSlid-
eDGPath with the following definition:

datatype VarSlideDGPath = Empty | Extend(VarSlideDGPath, VarSlide)

Then, we describe the reachability between two varSlides as VarSlideDGReachable
or VarSlideDGReachablePhi with the following definitions:

predicate VarSlideDGReachable (varSlideDG: VarSlideDG,
from: VarSlide, to: VarSlide, S: set<VarSlide>)
{
3 via: VarSlideDGPath e
VarSlideDGReachableVia (varSlideDG, from, via, to, S)
}

predicate VarSlideDGReachableVia(varSlideDG: VarSlideDG,
from: VarSlide, via: VarSlideDGPath, to: VarSlide,
S: set<VarSlide >)
decreases via

match via

case Empty = from = to

case Extend(prefix, n) = n in S A

to in VarSlideDGNeighbours(varSlideDG, n) A
VarSlideDGReachableVia (varSlideDG, from, prefix, n, S)

Chapter 2. Formal framework 26

function VarSlideDGNeighbours(varSlideDG: VarSlideDG, n: VarSlide):
set<VarSlide>
requires n in VarSlideDGMap (varSlideDG)

{
VarSlideDGMap (varSlideDG) [n]

)

predicate VarSlideDGReachablePhi(varSlideDG: VarSlideDG,
from: VarSlide, to: VarSlide, S: set<VarSlide >)

{
J via: VarSlideDGPath e VarSlideDGReachableViaPhi(varSlideDG,
from, via, to, S)

}

predicate VarSlideDGReachableViaPhi(varSlideDG: VarSlideDG,
from: VarSlide, via: VarSlideDGPath, to: VarSlide,
S: set<VarSlide >)
decreases via

match via

case Empty = from = to

case Extend(prefix, n) = n in S A

to in VarSlideDGNeighbours(varSlideDG, n) A

n.1 = Phi A

VarSlideDGReachableVia (varSlideDG, from, prefix, n, S)

2.6 Correspondence between slideDG and varSlideDG

Given a statement S and its corresponding SSA version S’, we describe the con-
nection between a slide in the slideDG of S and its corresponding varSlide in the
varSlideDG of S” using the following function:

function VarSlideOf(S: Statement, S’: Statement, slide: Slide,
XLs: seq<set<Variable>>, X: seq<Variable>): VarSlide
requires Valid(S) A Valid(S")
requires Core(S) A Core(S”)
requires ValidXLs(glob(S"), XLs, X)
requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))
requires slide in SlideDGSlides (SlideDGOf(S))

var v, 1 := SlideVariable(slide), SlideLabel(slide);
var 1’ := VarLabelOf(S, S’, 1, XLs, X);
var v’ := InstanceOf(S’, 17, v, XLs, X);
(v, Regular)
}

We first find the variable v and label] of the given slide. Then, we find I’s correspond-
ing varLabel I" (using the VarLabelOf function), and finally we find the instance i (of
variable v) defined in [” (using the InstanceOf function). Every slide in the slideDG of
S has exactly one corresponding regular varSlide in the varSlideDG of S’ (and vice
versa), therefore VarSlideOf is considered an invertible function. The declarations of
functions used in VarSlideOf can be found in Appendix A.1.4.

For example, given slide 7:

Chapter 2. Formal framework 27

The label of slide 7is1=1[2,2,2,2,1,1,1,1].

The variable of slide 7 is v = max.

The varLabel of 1is " =[2,2,2,2,1,2,1,1,1,1,1].

The instance of v defined at 1" is max7.

Therefore, the varSlide corresponding to slide 7 for max is (max7, Regular).

Further correspondences between the two graphs are described in the next chapter.

28

Chapter 3

Properties of slide dependence
graphs

In this chapter we provide a deeper look at the correspondence between slideDG
and varSlideDG of a program.

3.1 Reaching definitions and liveness

We present two theorems that describe the correspondence between reaching def-
initions and liveness analysis. Both theorems use the following definition (regular
frontier):

{} v’ is not in def(S)
RF(v") = [{varSlide of v’} v’ is a regular instance

regular predecessors of the varSlide of v/ v’ is a phi instance

Note that for a given varSlide vSlide, for each predecessor p of vSlide: if p is a regular
varSlide, then it is in the reqular predecessors of vSlide; if p is a phi varSlide, then the
regular predecessors of p are in the reqular predecessors of vSlide.

Theorem 1 (Reaching definitions and liveness for exit). Let S be a statement, and S’
be its SSA form. Let [/, v’ be a valid label in S” and a live on exit instance of S” at ',
respectively. Let v, [be the variable of v and the corresponding label of I” using the
VarLabel Of function, respectively.

We then say that all varSlides of RD_OUT_FOR(S, [, v) = RE(v").

Examples

Let us demonstrate this theorem on Listings 2.1 and 2.2 using the following exam-
ples:

1. For the first example, let I’, v" be 15 and sums§, respectively, as sum$ is a live
on exit instance of S” at 15. Let v, I be sum and 13, respectively, as sum is the
variable of sum8 and 13 is the label of 15in S. The set RD_OUR_FOR(S, 13, sum)
is {(sum, 11)}, and its corresponding set of varSlides is {sum8}. The varSlide of
sum8 is Regular, therefore RF(sums8) is {sumS§}.

2. For the second example, let I, v’ be 13 and max6, respectively, as max6 is a live
on exit instance of S” at 13. Let v, [be max and 11, respectively, as max is the
variable of max6 and 11 is the label of 13 in S. The set RD_OUR_FOR(S, 11, max)

Chapter 3. Properties of slide dependence graphs 29

is {(max,1), (max,7)}, and its corresponding set of varSlides is {max1, max7}. The
varSlide of max6 is Phi, therefore RF(max6) is {max1, max7}.

3. For the third and final example, let I’, v be the empty label [] and isSorted12,
respectively, as isSorted12 is a live on exit instance of S’ at [], meaning its a
live on exit instance of the entire statement S’. Let v, [be isSorted and [], re-
spectively, as isSorted is the variable of isSorted12 and [] is the label of [] in S.
The set RD_OUR_FORC(S, [], isSorted) is {(isSorted,20), (isSorted,22)} (the final-
def slides of isSorted in S according to Definition 7), and its corresponding set
of varSlides is {isSorted13, isSorted14}. The varSlide of isSorted12 is Phi, there-
fore RF(isSorted12) is {isSorted13, isSorted14}.

The exact details of the proof are not immediately needed for understanding the
theorem, therefore the formal proof can be found in Appendix A.2.1. However, here
we provide a short description of the proof.

In the case that slipOf(S, I) is an assignment and v is defined in that assignment,
the set RD_OUT_FOR(S, I, v) includes only the slide of (v, [). The label I’ is the var-
label of /, therefore cannot be a label of a Phi assignment. Thus, the var-slide of (v,
l) is Regular, therefore RF(v") includes only the var-slide itself. Then, all varSlides of
RD_OUT_FORC(S, I, v) = RE(v").

In the case that slipOf(S, /) is an If statement and v is defined in that statement,
v’ is an instance of a Phi var-slide. Then, RF(v’) is the sum of RF(v1’) + RF(v2")
where v1” and v2’ are the instances of v defined in both branches of the If statement.
Inductively, RE(S’, v1’) = the varSlides of RD_OUT_FOR(S, I[+[1], v) and RE(S’, v2’) =
the varSlides of RD_OUT_FORC(S, [+[2], v), where [+[1] and [+[2] are the labels of both
branches of the If statement. The set of RD_OUT for an If statement is the sum of the
set of RD_OUT for the Then and the Else branch of the If statement (by definition of
RD_OUT in Listing 2.3.1). Therefore the varSlides of RD_OUT_FOR(S, [+[1], v) + the
varSlides of RD_OUT_FORC(S, I+[2], v) is exactly the varSlides of RD_OUT_FOR(S, I,
).

Theorem 2 (Reaching definitions and liveness for entry). Let S be a statement, and
S’ be its SSA form. Let I, v’" be a valid label in S” and a live on entry instance of S” at
I’, respectively. Let v, I be the variable of v” and the corresponding label of I using
the VarLabelOf function, respectively.

We then say that all varSlides of RD_IN_FOR(S, I, v) = RF(v").

Examples

The following examples demonstrate the theorem:

1. For the first example, let I’, v" be 13 and sumb, respectively, as sumb is a live
on exit instance of S” at 13. Let v, [be sum and 11, respectively, as sum is the
variable of sum5 and 11 is the label of 13 in S. The set RD_OUR_FOR(S, 11,
sum) is {(sum, 2), (sum, 11)}, and its corresponding set of varSlides is {sum2,
sum8}. The varSlide of sumb5 is Phi, therefore RF(sumb) is {sum2, sum8}.

2. For the second and final example, let I, v" be 14 and max6, respectively, as max6
is a live on exit instance of S” at 14. Let v, | be max and 12, respectively, as max
is the variable of max6 and 12 is the label of 14 in S. The set RD_OUR_FOR(S,
12, max) is {(max, 1), (max, 7)}, and its corresponding set of varSlides is {max1,
max7}. The varSlide of max6 is Phi, therefore RF(max6) is {max1, max7}.

Chapter 3. Properties of slide dependence graphs 30

The formal proof can be found in Appendix A.2.2. However, here we provide a short
description of the proof.

Let I1 be a valid label in S (where [= I1 + [c]), I1’ be the varLabel of 11, and
slipOf(S, I1) be a SeqComp statement. In the case that c = 1, the set of LV_ENTRY
for the left branch of a SeqComp statement is equal to the set of LV_ENTRY of the
SeqComp statement itself (by definition of LV_ENTRY in Listing 2.3.2), therefore v’
is live on entry at I1". Inductively, RF(S’, v’) = the varSlides of RD_IN_FOR(S, I1).
The set of RD_IN for a SeqComp statement is equal to the set of RD_IN for the left
branch of a SeqComp statement (by definition of RD_IN in Listing 2.3.1), therefore
the varSlides of RD_IN_FOR(S, I1) = the varSlides of RD_IN_FOR(S,).

In the case that c = 2, the set of LV_ENTRY for the right branch of a SeqComp
statement is equal to the set of LV_EXIT for the left branch of the SeqComp statement
(by definition of LV_ENTRY and LV_EXIT in Listing 2.3.2), therefore v’ is live on exit
at [1'+[1]. Using Theorem 1, RF(S’, v") = the varSlides of RD_OUT_FOR(S, I1+[1]).
The set of RD_OUT for the left branch of a SeqComp statement is equal to the set of
RD_IN for the right branch of the SeqComp statement (by definition of RD_IN and
RD_OUT in Listing 2.3.1), therefore the varSlides of RD_OUT_FOR(S, /1+[1]) = the
varSlides of RD_IN_FOR(S, I).

3.2 Reachability in the slideDG and the varSlideDG

We now turn to describe the correspondence between slides and paths of the slide-
dependence graph of S, and varSlides and paths of the varSlide-dependence graph
of S’, using the following two theorems:

Theorem 3 (Path correspondence). Given a statement S, its slide-dependence graph
slideDG, its varSlide-dependence graph varSlideDG, and two slides slidel and slide2
where slide? is reachable from slidel in slideDG using via, then the varSlide of slide2
is reachable from the varSlide of slidel in varSlideDG.

Theorem 4 (Path back correspondence). Given a statement S, its slide-dependence
graph slideDG, its varSlide-dependence graph varSlideDG, and two slides slidel and
slide2 where the varSlide of slide? is reachable from the varSlide of slidel in varSlid-
eDG, then slide? is reachable from slidel in slideDG.

The formal definition and proof of Path correspondence is as follows:

lemma PathCorrespondence (slideDG: SlideDG, varSlideDG: VarSlideDG,
slidel: Slide, slide2: Slide, via: SlideDGPath, S: Statement,
S’: Statement, XLs: seq<set<Variable>>, X: seq<Variable >)
requires Valid(S) A Core(S)
requires Valid(S’) A Core(S’)
requires IsSlideDGOf (slideDG, S)
requires IsVarSlideDGOf(varSlideDG, S)
requires ValidXLs(glob(S), XLs, X)
requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S))) =S
requires SlideDGReachableVia (slideDG, slidel, via,
slide2 , SlideDGSlides (slideDG))
ensures VarSlideDGReachable (varSlideDG,
VarSlideOf (S, S’, slidel, XLs, x),
VarSlideOf (S, S’, slide2, XLs, x),
VarSlideDGVarSlides (varSlideDG))
decreases via

Chapter 3. Properties of slide dependence graphs 31

Proof. Let slidel and slide2 be slides of S, and varSlidel and varSlide2 be their corre-
sponding varSlides of S’. We need to show that if slide2 is reachable from slidel then
varSlide2 is reachable from varSlidel. Let via be the SlideDGPath between slidel and
slide2.

Base case: If via is Empty then in fact slidel = slide2, therefore varSlidel = varSlide2
which means that varSlide2 is reachable from varSlidel.

via is Extend(prefix, n), then 7 is reachable from slidel using the path prefix, and
n is a predecessor of slide2. Let n’ be the corresponding varSlide of n. We need to
show that n’ is reachable from varSlidel and that varSlide2 is reachable from n’.

Inductive hypothesis: Suppose 1’ is reachable from varSlidel.

Inductive step: n is a predecessor of slide2, therefore varSlide2 is reachable from
n’ using Lemma 5 (as explained next). We have shown a path between varSlidel
and n’ and between n’ and varSlide2, therefore there is a path between varSlidel and

varSlide2 and we can say that varslide2 is reachable from varSlidel. O
recursively EdgeToVarPhiPath

[| [|

FIGURE 3.1: PathCorrespondence demonstration.

Lemma 5 (Edge to var phi path).
lemma EdgeToVarPhiPath(slidel: Slide, slide2: Slide,
slideDG: SlideDG, varSlideDG: VarSlideDG, S: Statement,
S’: Statement, XLs: seq<set<Variable>>, X: seq<Variable >)
requires Valid(S) AN Core(S)
requires Valid(S’) N Core(S’)
requires IsSlideDGOf(slideDG, S)
requires IsVarSlideDGOf(varSlideDG, S)
requires SlideDependence(slidel , slide2 , S)
requires ValidXLs(glob(S), XLs, X)
requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S))) =S
ensures VarSlideDGReachablePhi(varSlideDG ,
VarSlideOf(S, S’, slidel , XLs, x),
VarSlideOf(S, S’, slide2 , XLs, x),
VarSlideDGVarSlides (varSlideDG))

Proof. Let v be the variable defined in slide]l and used in slide2. Let I1 be the label of
slidel where v is defined, and [2 be the label of slide2 where v is used. Let vSlidel,
varL1 and vSlide2, varL2 be the corresponding var-slides and labels of slidel, I1 and
slide2, 12, respectively. Let v” be the instance of v defined in vSlidel and v’ be the
instance of v used in vSlide2, which is live on entry in varL2.

Using Theorem 2, we can say that all varSlides of RD_IN_FOR(S, 12, v) = RF(v").
There is a slide-dependence between slidel and slide2, therefore (v, I1) is in RD_IN_FOR(S,
12, v) and its varSlide of vSlidel is in RF(v’).

Chapter 3. Properties of slide dependence graphs 32

If v’ is Regular, then by definition RF(v’) is {varSlide of v’}. We already saw that
vSlidel is in RF(v’), therefore the varSlide of v’ is exactly vSlidel which states that
v” = v’. Therefore, there is an edge between vSlidel and vSlide2? in varSlideDG and
vSlide? is reachable from vSlidel.

If v’ is Phi, then by definition RF(v’) is the regular predecessors of v". We already
saw that vSlidel is in RF(v’), therefore there is a path of 0 or more phi varSlides
between the vSlidel and varSlide of v’. Furthermore, since v’ is used in vSlide2, there
is an edge between the varSlide of v" and vSlide2. Therefore, there is a path of 0

or more phi varSlides between vSlidel and vSlide2, and we can say that vSlide? is

reachable from vSlidel. O
Given: @—b@
Regular Var-Slide
predecessor phi dependent

I I [|

FIGURE 3.2: EdgeToVarPhiPath example: Slide 1 as slidel, slide 13 as
slide2, max1 as v” and max6 as v’.

The formal definition and proof of Path back correspondence is as following:

lemma PathBackCorrespondence (slideDG: SlideDG,
varSlideDG: VarSlideDG, slidel: Slide, slide2: Slide,
via: VarSlideDGPath, S: Statement, S’: Statement,
XLs: seq<set<Variable>>, X: seq<Variable >)
requires Valid(S) A Core(S)
requires Valid(S’) A Core(S’)
requires IsSlideDGOf(slideDG, S)
requires IsVarSlideDGOf(varSlideDG, S)
requires ValidXLs(glob(S), XLs, X)
requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S))) =S
requires VarSlideTag(VarSlideOf(S, S’, slidel, XLs, x)) = Regular
A VarSlideTag (VarSlideOf(S, S’, slide2, XLs, x)) = Regular
requires VarSlideDGReachableVia(varSlideDG,
VarSlideOf (S, S’, slidel, XLs, x), via,
VarSlideOf(S, S’, slide2, XLs, x),
VarSlideDGVarSlides (varSlideDG))
ensures SlideDGReachable (slideDG, slidel, slide2,
SlideDGSlides (slideDG))
decreases via

Proof. Let slidel and slide2 be slides of S, and varSlidel and varSlide2 be their cor-
responding varslides of S’. We need to show that if varSlide2 is reachable from

Chapter 3. Properties of slide dependence graphs 33

varSlidel then slide2 is reachable from slidel. Let via be the VarSlideDGPath be-
tween varSlidel and varSlide2.

Base case: If via is Empty then in fact varSlidel = varSlide2, therefore slidel =
slide2 which means that slide2 is reachable from slidel.

via is Extend(prefix’, n’), then n’ is reachable from varSlidel using the path prefix’,
and ' is a predecessor of varSlide2. Let n” be the last regular varSlide on the VarSlid-
eDGPath between varSlidel and varSlide2 (could be n’ or another varSlide if n’ is
Phi), and let prefix” be the VarSlideDGPath that is prefix’ without n’ (meaning up
until n”). Let n be the corresponding slide of n”’. We need to show that 7 is reachable
from slidel and that slide2 is reachable from n.

Inductive hypothesis: Suppose # is reachable from slidel.

Inductive step: varSlide2 is reachable from n”, therefore slide2 is reachable from
n using Lemma 6 (as explained next). We have shown a path between slidel and n
and between n and slide2, therefore there is a path between slidel and slide2 and we
can say that slide2 is reachable from slidel. O

regular \ phi

regular
recursively VarPhiPathToEdge

[I |

FIGURE 3.3: PathBackCorrespondence demonstration.

Lemma 6 (Var phi path to edge).
lemma VarPhiPathToEdge(slidel: Slide, slide2: Slide,
slideDG: SlideDG, wvarSlideDG: VarSlideDG, S: Statement,
S’: Statement, XLs: seq<set<Variable>>, X: seq<Variable >)
requires Valid(S) N Core(S)
requires Valid(S’) N Core(S’)
requires IsSlideDGOf(slideDG, S)
requires IsVarSlideDGOf(varSlideDG, S)
requires VarSlideTag(VarSlideOf(S, S, slidel , XLs, x))
requires VarSlideTag(VarSlideOf(S, S, slide2 , XLs, x))
requires VarSlideDGReachablePhi(varSlideDG ,
VarSlideOf(S, S’, slidel , XLs, x),
VarSlideOf(S, S’, slide2 , XLs, x),
VarSlideDGVarSlides (varSlideDG))
requires ValidXLs(glob(S), XLs, X)
requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S))) =S
ensures SlideDependence(slidel , slide2 , S)

Regular
Regular

Chapter 3. Properties of slide dependence graphs 34

Proof. LetvSlidel, varL1 and vSlide2, varL2 be the corresponding var-slides and labels
of slidel, I1 and slide2, |2, respectively. Let v be the variable of the instance defined
in vSlidel and used in vSlide2. Let v” be the instance of v defined in vSlidel and v’ be
the instance of v used in vSlide2, which is live on entry in varL2.

If v” = v’, then there is an edge between vSlidel and vSlide? in varSlideDG and
an edge between slidel and slide? in slideDG, meaning slide? is slide-dependent on
slidel.

If v” !=v’, then v’ is Phi (recall that v" is live on entry in varL2). Using Theorem 2,
we can say that all varSlides of RD_IN_FOR(S, 12, v) = RF(v’). v” is a regular prede-
cessor of v, meaning it is in RF(v"), therefore its slide (v, /1) is in RD_IN_FOR(S, 12,

v). Thus, slide2 is slide-dependent on slidel. O
via phi only
Given: @ @
Regular Var-Slide
predecessor phi dependent

[| [|

(ot Dmmnnome)—o(om
OO

FIGURE 3.4: VarPhiPathToEdge example: max1 as v”, max6 as v’, slide 1
as slidel and slide 13 as slide2.

35

Chapter 4

A novel slide-based slicing
algorithm

In this section we describe our slide-based slicing algorithm and provide examples.

4.1 The algorithm

Given a statement S, a set of variables V, and a slide-dependence graph slideDG of
S, our algorithm computes the set of slides whose union is the program’s slice of S
for the values of each variable in V when exiting S.

Let Sy be an initial set of final-def slides of S on V, and let WorkSet be a temporary
initialized to Sy. Poll returns a slide and removes it from WorkSet, and for each such
slide in WorkSet we find its slide-dependence predecessors in the slideDG (that are
not in Sy) and add them to Sy and to WorkSet. The algorithm terminates when there
are no slides left in WorkSet, and it returns Sy.

The algorithm has a linear time-complexity in the size of the slide-dependence
graph of S. Let N be the number of nodes and E be the number of edges in the
graph, in the worst-case WorkSet contains all slides (N) and the algorithm finds all
predecessors of all slides (E), therefore the algorithm’s worst-case time complexity
is O(N+E).

The algorithm is presented as Algorithm 1:

Result: Sy

Sy 1= Upev{final-def slides of S on v in slideDG};

WorkSet := Sy;

while WorkSet # @ do

S, := Poll(WorkSet);
NewlyReachable := {Predecessors of S, in slideDG} — Sy — {S, };
Sv := Sy U NewlyReachable;
WorkSet := WorkSet U NewlyReachable;
end
Algorithm 1: Slide-based slicing algorithm

4.2 Examples

In the first example our program computes the sum of two variables (see Listing
4.1),and V = {w} where V contains a variable that is not included in the code. Sy is
empty (since there are no final-def slides of S on w), therefore WorkSet is empty and
the loop will not execute (see Listing 4.2).

WN -

IO UT WD -

Chapter 4. A novel slide-based slicing algorithm 36

= 5;
= 4;
X + y

N < X

LISTING 4.1: Program S1

1 skip
LISTING 4.2: ComputeSlice(S1,{w})

FIGURE 4.1: The slideDG of S1 (from Listing 4.1) on the left, and the slid-
eDG of its slice (from Listing 4.2) on the right.

In the second example our program calculates the sum and product for an array
of numbers (see Listing 4.3) and our set of variables is V = {sum}. Sy and WorkSet
will initially contain the final-def slides of sum: slides 2 and 5. Then, we only add
the predecessors of slide 5 to Sy (there are no predecessors for slide 2): slides 1 and 7
(see the slideDG in Figure 4.2 for the predecessors). Again, there are no predecessors
for slides 1 and 7, therefore the slice of sum is {1,2,5,7} (see Listing 4.4).

i = 0;

sum := 0;

prod := 1;

while i < a.length do
sum := sum + al[i];

prod := prod = a[il;
i=1+1
od

LISTING 4.3: Program S2

ol
o

i = 0;

sum := 0;

while i < a.length do
sum := sum + al[i];

NN WD -

od
LISTING 4.4: ComputeSlice(S2,{sum})

FIGURE 4.2: The slideDG of S2 (from Listing 4.3) on the left, and the slid-
eDG of its slice (from Listing 4.4) on the right.

—_

OO XU WN -

Chapter 4. A novel slide-based slicing algorithm 37

In the third and final example, our program sums the values of an array in even
indices or in odd incides, depending on the parity of the array’s length, respectively
(see Listing 4.5). Let V = {sum}, therefore all of the programs slides {1,3,5,8,9} will be
in the resulting slice (see Listing 4.6).

sum := 0; 1 sum := 0;

if a.length % 2 == 0 then 2 if a.length % 2 == 0 then
i =0 3 i:=0

else 4 else
i=1 5 i=1

fi; 6 fi;

while i < a.length do 7 while i < a.length do
sum := sum + al[i]; 8 sum := sum + al[i];
i=1i+ 2 9 i =1+ 2

od 10 od

LISTING 4.5: Program S3 LISTING 4.6: ComputeSlice(S3,{sum})

ORONO
oAt

FIGURE 4.3: The slideDG of S3 (from Listing 4.5) and the slideDG of its
slice on {sum} (from Listing 4.6) are the same.

38

Chapter 5

Proof of correctness

In this section we provide the correctness proof of our slide-based slicing algorithm.

5.1 Our algorithm

The SSA-based algorithm is semantics-preserving, as proven in [7]. Our goal is
to prove that the resulting statements of the two algorithms are textually identi-
cal, which means that our algorithm also results in a semantics-preserving slice. To
prove this we use the following theorem:

Theorem 7 (Identical slices). Given three statements S, S1, and S2, where S1 is the
slide-based slice of S, S2 is the SSA-based slice of S, and there are no self or empty
assignments in S, then S1 is textually identical to S2.

Proof. Instead of using S1 and S2 we can use slipOf(S1, []) and slipOf(S2, []), therefore
we apply Lemma 10 which ensures that slipOf(S1, []) = slipO£(S2, []). The proof of
Lemma 10 is provided later in this chapter.]

The following terms, definitions (10, 11), and lemmas (8, 9) are needed for the proof
of Lemma 10.
We begin with presenting the relevant terminology:

* S: The original statement.

V: The set of variables for the slice.

e S’: The SSA version of S.

e V’: The set of the live-on-exit instance of each variable in V.
e SV’: The result of ComputeFISlice(S’,V").

e res: The SSA-based slice of S on V.

e SV:The slide-based slice of Son V.

* slidesSV: The set of slides of SV.

* varSlidesSV: The set of varSlides of SV".

We now continue with two formal definitions:

Definition 10 (slidesSV). Given a statement S, a set of variables V, and a slide-
dependence graph slideDG:

Chapter 5. Proof of correctness 39

V Sm e Sm in SlideDGSlides (slideDG)
A (3 Sn e Sn in finalDefSlides (S, slideDG, V)
A SlideDGReachable (slideDG, Sm, Sn, SlideDGSlides(slideDG))))

The set of slides of S in which each slide has a path to a final-def slide in the slideDG
of S. In our example, V = {isSorted} then slidesSV consists of slides 1, 3, 4, 7, 13, 17,
20 and 22 (where 20 and 22 are the final-def slides).

Definition 11 (varSlidesSV). Given a statement S, a set of instances V’, and a varSlide-
dependence graph varSlideDG:

vV Sm” e Sm’ in VarSlideDGVarSlides(varSlideDG) A
(3 Sn’ e VarSlideVariable(Sn’) in V' A
VarSlideDGReachable (varSlideDG, Sm’, Sn’,
VarSlideDGVarSlides (varSlideDG)))

The set of varSlides of S” in which each varSlide has a path to a live-on-exit instance
(in V’) in the varSlideDG of S’. In our example, V' = {isSorted12} then varSlidesSV
consists the varSlides of max1, i3, count4, max5, i5, count5, max6, max7, count9,
countlO, i11, isSorted12, isSorted13 and isSorted14.

We show the correspondence between slidesSV and varSlidesSV with the follow-
ing lemma:

Lemma 8 (LemmaSlidesSVToVarSlidesSV). Given a statement S, its corresponding
SSA version S’, and the mapping between X and XLs, for each slide in the slideDG
of S we have:

slide in slidesSV <=
VarSlideOf (S, S’, slide, XLs, X) in varSlidesSV

Proof. We prove the first direction of the lemma:

slide in slidesSV —
VarSlideOf (S, S’, slide, XLs, X) in varSlidesSV

For each slide € slidesSV, we find its corresponding varSlide in S, and show that it
is also in varSlidesSV . Let vSlide be the corresponding varSlide of slide using the func-
tion call vSlide := VarSlideOf(S, S’, slide, XLs, X). This ensures that for each slide there
is exactly one corresponding varSlide (and backwards). In order to prove that vSlide
€ varSlidesSV we need to show that there exists an instance in V' whose varSlide is
reachable from vSlide (Definition 11). Let:

e finalDefSlide: A final-def slide that is reachable from slide (could be that slide is
in fact finalDefSlide). The final-def slides in our example (where V={isSorted})
are slides 20 and 22.

e finalDefVarSlide: The varSlide Of finalDefSlide. The final-def varSlides in our
example are the varSlides of isSorted13 and isSorted14.

e [vExitVarSlide: The varSlide of v” (where v’ is the instance of the variable of
finalDefSlide that is in V’), which we need to prove is reachable from vSlide.
Note that v” is a live on exit instance of S’. In our example it is the varSlide of
isSorted12.

Using Theorem 1 where varLabel is [] (because v’ is live on exit from S’), we can
say that all varSlides of RD_OUT_FOR(S, [], v) are RE(v’). Using Definition 7, these
varSlides are the corresponding varSlides of the final-def slides.

Chapter 5. Proof of correctness 40

If lvExitVarSlide is Regular, then RF(v’) is {lvExitVarSlide} and {finalDefVarSlide} is
in {{vExitVarSlide}.

If lvExitVarSlide is Phi, then RF(v’) is the set of regular predecessors of v’, which
includes finalDefVarSlide. Thus, we can conclude that there is a path from finalDef-
VarSlide to lvExitVarSlide, therefore lvExitVarSlide is reachable from finalDefVarSlide.

In our example, the instance of [vExitVarSlide is isSorted12 and the set reaching
out from the corresponding point is S is {(isSorted,20), (isSorted,22)}. Using The-
orem 1, the varSlides of this set are {isSorted13, isSorted14} and are the regular-
predecessor varSlides of the varSlide of isSorted12.

Now we prove the second direction of the lemma:

VarSlideOf (S, S’, slide, XLs, X) in varSlidesSV —
slide in slidesSV

or in other words:

slide ¢ slidesSV —
VarSlideOf (S, S’, slide, XLs, X) ¢ varSlidesSV

Suppose slide & slidesSV, let us assume for the sake of contradiction that vSlide
varSlidesSV. By Definition 10, there exists a varSlide, [vExitVarSlide, whose variable
is in V" and is reachable from vSlide. Recall that vSlide is a regular varSlide (formed
from the VarSlideOf function). Let Sn” be the last regular varSlide on a VarSlideDG-
Path between vSlide and IvExitVarSlide (including [vExitVarSlide), and let Sn be its
corresponding slide. Again, the instance of [vExitVarSlide is live-on-exit from S’, and
by using Definition 7 the set RD_OUT(S, []) from the corresponding label [] in S are
final-def slides of S. By Theorem 1, the varSlides of this set are regular-predecessors
of [vExitVarSlide, therefore Sn is a final-def slide of S. By using Theorem 4 (PathBack-
Correspondence, as explained in Chapter 3) Sn is reachable from slide. According
to Definition 10, slide € slidesSV, in contradiction to slide ¢ slidesSV, hence vSlide ¢
varSlidesSV.

O

We have proved that each slide in slidesSV has a corresponding vSlide in varSlidesSV .
We also gained another property: |slidesSV | = |varSlidesSV |, by counting exactly
one varSlide for each slide using the VarSlideOf function.

Next, we define the following predicate:

predicate MatchingSlips(S1: Statement, S2: Statement, 1: Label)
reads =
requires Valid(S1) A Valid(S2)
requires Core(S1) A Core(S2)
requires ValidLabel(l, S1)
requires ValidLabel(l, S2)

var slipOfS1 := slipOf(S1, 1);
var slipOfS2 := slipOf(S2, 1);

match slipOfS1 |{
case Skip =

IsSkip (slipOfS2)
case Assignment(LHS,RHS) =

IsSkip (slipOfS2) Vv IsAssignment(slipOfS2)
case SeqComp(S1,S52) =

IsSkip (slipOfS2) Vv IsSeqComp (slipOfS2)
case IF(B,Sthen, Selse) =

Chapter 5. Proof of correctness 41

IsSkip (slipOfS2) Vv IsIF (slipOfS2)
case DO(B,Sloop) =
IsSkip (slipOfS2) Vv IsDO(slipOfS2)

}
}

We use this predicate for S and res in order to prove the following lemma:

Lemma 9 (LemmaMatchingSlips). Given a statement S, its SSA-based slice res, and
a valid label in both statements I:

MatchingSlips (S, res, 1)

Proof. Let slipOfS be the result of slipOf(S, 1), and slipOfRes the result of slipOf(res,
1). For this proof we distinguish between the various values of slipOfS.

e If slipOfS is Skip then by converting Skip to SSA, computing its FI-Slice and
converting back to SSA - it will stay Skip, therefore slipOfRes is also Skip.

e If slipOfS is Assignment, by converting it to SSA it will stay an Assignment.
After computing its FI-Slice it will stay Assignment or become Skip (if it is not
in the slice). Finally, the result of converting back from SSA will Assignment
or Skip.

e If slipOfS is Sequential Composition, by converting it to SSA it will stay Se-
quential Composition. After computing its FI-Slice it will stay Sequential Com-
position or become Skip (if it is not in the slice). Finally, the result of converting
back from SSA will be either Sequential Composition or Skip.

e If slipOfS is IF, by converting it to SSA it will stay as IF. After computing its
FI-Slice it will stay IF or become Skip (if it is not in the slice). Finally, the result
of converting back from SSA will be either IF or Skip.

e If slipOfS is DO, by converting it to SSA it will be Sequential Composition of
Phi-Assignment and DO. After computing its FI-Slice the Sequential Compo-
sition will stay Sequential Composition or become Skip (if it is not in the slice).
Finally, the result of converting back from SSA will return to be either DO or
Skip.

O

Finally, in order to show that slipOf(SV, []) = slipOf(res, []) (and complete the proof
of Theorem 7) we need to prove the following lemma:

Lemma 10 (LemmaldenticalSlips). Given the slide-based algorithm slice SV, the SSA-
based algorithm slice res (both for a statement S and a set of variables V), and a valid
label in both slices I:

slipOf (SV, 1) = slipOf(res, 1)

Proof. We start by using Lemma 11 (full definition and proof in Appendix A.2.3),
which states that: IsSkip(slipOf(SV, 1)) <= IsSkip(slipOf(res, 1)). If slipOf(SV,]) is
Skip, then slipOf(res, 1) is Skip; if slipOf(SV, 1) is not Skip, then slipOf(S, 1) is also not
Skip (SV is a substatement of S) and we use Lemma 9 to determine that slipOf(SV, 1)
and slipOf(res, 1) (and in fact slipOf(S, 1)) are of the same type. We prove this lemma
by induction on 1:

Base case:

Chapter 5. Proof of correctness 42

¢ slipOf(SV, 1) is Skip: slipOf(res, 1) is also Skip, as explained using Lemma 11.

e slipOf(SV, 1) is Assignment: slipOf(res, 1) is also Assignment (as explained
above) and we need to show that it is exactly the same assignment. First,
we find the set of slides of all the assignments in slipOf(SV, 1) and the set of
varSlides of all the assignments in slipOf(SV’, ') (where I is the corresponding
label of / in SV’) and mark them as A and B, respectively. We already know that
I'slidesSV | = |varSlidesSV |, and that each slide in slidesSV has a correspond-
ing varSlide in varSlidesSV (and backwards). We also know that A is a subset
of slidesSV and B is a subset of varSlides, therefore | Al = |B|. Then, for each
slide and variable in the first set, there is a corresponding varSlide and instance
in the second set (Lemma 8), and if we convert each of those instances back to
their original variables we will get the assignment of res (which is the exact
same assignment of SV).

Inductive hypothesis:

o If slipOf(SV, 1) is a Sequential Composition statement, suppose slipOf(SV, 1+[1])
= slipOf(res, 1+[1]) and slipO£f(SV, 1+[2]) = slipOf(res, 1+[2]) (both branches of
the Sequential Composition statement).

o If slipOf(SV, 1) is an If statement, suppose slipOf(SV, 1+[1]) = slipOf(res, 1+[1])
and slipOf(SV, 1+[2]) = slipOf(res, 1+[2]) (both branches of the If statement).

o If slipOf(SV, 1) is a Do statement, suppose slipOf(SV, 1+[1]) = slipOf(res, 1+[1])
(loop body of the Do statement).

Inductive step:

e If slipOf(SV, 1) is a Sequential Composition statement, slipOf(res, 1) is of the
same type (as explained above). By our hypothesis, slipOf(SV, 1) = slipOf(res,
1).

o If slipOf(SV, 1) is an If statement, slipOf(res, 1) is of the same type (as explained
above). Let b be the boolean expression in slipOf(S, 1). In the transition to
SSA, the variables in b were renamed into new instances in slipOf(S’, 1), where
1" is the result of VarLabelOf function on . Then, after computing its flow-
insensitive slice, b remained the same exact expression in slipOf(SV’, I'). In
the transition back from SSA, the instances in b were renamed to their original
variables in slipOf(res, 1), where 1 is the result of LabelOf function on I’ (and
using Lemma 12, in Appendix A.2.3), it is the original 1. Therefore b remained
the same exact boolean expression in slipOf(res, 1) as in slipOf(S, 1). By our
hypothesis, slipOf(SV, 1) = slipOf(res, 1).

o If slipOf(SV, 1) is a Do statement, slipOf(res, 1) is of the same type (as explained
above). The boolean expression in slipOf(res, 1) is the same exact boolean ex-
pression in slipOf(S, 1), as previously explained. By our hypothesis, slipOf(SV,
1) = slipOf(res, 1).

O

To summarize, we proved that our slide-based algorithm is semantics-preserving.
This was done by showing that the SSA-based slice of S is textually identical to the
slide-based slice of S.

43

Chapter 6

Conclusion

In this thesis we have presented a new slide-based slicing algorithm. We proved
that the resulting slice of the algorithm is textually identical to the resulting slice
of an existing SSA-based slicing algorithm [7], which is semantics-preserving, there-
fore our algorithm is also semantics-preserving. Our algorithm is syntax-preserving,
therefore we gained syntax-preservation for the SSA-based algorithm. We have also
discussed how we improved the complexity of the SSA-based algorithm using our
algorithm.

We have formalized the slide-dependence graph used in our slicing algorithm,
and formalized the varSlide-dependence graph and the connection between the two
graphs in order to prove that both resulting slices are textually identical.

We have also formalized the transition of a program into SSA, the computation
of its flow-insensitive slice, and the transition back from SSA. Then we showed that
the resulting slice of every slicing algorithm that meets these requirements is syntax-
preserving and textually identical to our algorithms resulting slice.

In this thesis we have made some simplifying assumptions. Our algorithm com-
putes a slice for a statement of a rather simple language and does not support com-
plex statements such as goto or switch statements, as we wanted to prove the textual
equivalence to the code in [7]. Moreover, we can use slideDG or PDG as a program
representation also for complex statements (as been done in [4] and [8]) and forgoing
the semantic-preservation of the statements. Also, some of the lemmas needed in the
proof of our algorithm have been used with the Dafny language without providing
a formal proof, due to the scope of this thesis.

Some directions for further research are:

¢ Implementing a co-slicing algorithm (described in [7]), an advanced sliding
transformation in which the complement reuses a selection of extracted results,
thus yielding a potentially smaller complement.

¢ Using our formal framework in order to prove the correctness of a PDG-based
slicing algorithm.

¢ Expanding our algorithm for slicing from a different point in the statement.
For a statement S and a set of variables V, our algorithm uses backward slicing
from the final-def nodes of each variable in V. This could be expanded by
slicing from any regular node and each variable, not necessarily its final-def.

¢ Using our formal framework to develop algorithms for cloning, code-motion
refactoring, etc.

Chapter 6. Conclusion 44

We begun our work by developing a slicing algorithm that is using slide-dependence
graph for program representation. In order to prove our algorithm we have devel-
oped a solid formal framework that, as described above, can be used for many other
applications that improve code quality.

Appendix A

Appendix

A.1 Full definitions
A.1.1 Utility functions

predicate Valid (S: Statement)
{
match S {
case Skip = true
case Assignment(LHS,RHS) = ValidAssignment (LHS,RHS)
case SeqComp(S1,S2) = Valid(S1) A Valid(S2)
case IF(BO,Sthen, Selse) =
(V state: State e B0.0.requires(state)) A
Valid (Sthen) A Valid (Selse)
case DO(B,Sloop) =
(V state: State e B.0.requires(state)) A Valid(Sloop)
}A
V statel: State, P: Predicate e P.0.requires(statel)

}

predicate Core(stmt: Statement)
{
match stmt {
case Skip = true
case Assignment(LHS, RHS) = true
case SeqComp(S1, S2) = Core(S1) A Core(S2)
case IF(B0O,Sthen, Selse) = Core(Sthen) A Core(Selse)
case DO(B,Sloop) = Core(Sloop)
}
}

function method setOf<T>(s: seq<T>): (res: set<T>)
ensures V v e Vv in res <= vV in s

{

set x | x in s

}

predicate ValidAssignment(LHS: seq<Variable >, RHS: seq<Expression>)

{
}

ILHS| = IRHS| A IsetOf(LHS)| = ILHSI

predicate ValidLabel(l: Label, S: Statement)
reads =
requires Valid(S) A Core(S)

if 1 = [] then true
else
match S {

45

Appendix A. Appendix

46

case Skip = false

case Assignment(LHS,RHS) = false

case SeqComp(S1,S52) =
if 1[0] = 1 then ValidLabel(1[1..], S1)
else ValidLabel(1[1..], S2)

case IF(BO,Sthen, Selse) =
if 1[0] = 1 then ValidLabel(1[1..], Sthen)
else ValidLabel(1[1..], Selse)

case DO(B,Sloop) =
if 1[0] = 1 then ValidLabel(1[1..], Sloop)
else false

}

}

function method def(S: Statement): set<Variable>
{
match S {
case Assignment(LHS,RHS) = setOf(LHS)
case Skip = {}
case SeqComp(S1,S52) = def(S1) + def(S2)
case IF(B0O,Sthen, Selse) = def(Sthen) + def(Selse)
case DO(B,Sloop) = def(Sloop)
}
}

function method glob(S: Statement): set<Variable>

{
}

set x | x in def(S) + input(S)

function GetRHSVariables(seqExp: seq<Expression>): set<Variable>

{

if seqExp = [] then {}

else seqExp[0].1 + GetRHSVariables(seqExp[1..])
}

A.1.2 Slides functions

function SlideLabel(s: Slide): Label { s.0 }
function SlideVariable(s: Slide): Variable { s.1 }

function SlideLabels(s: Slide, S: Statement): set<Label>
requires Valid(S) A Core(S)
requires s in SlidesOf(S, def(S))

set 1 | 1 = SlideLabel(s) V
(1 < SlideLabel(s) A (IsDO(slipOf(S, 1)) Vv IsIF(slipOf(S, 1))))
}

function SlidesOf(S: Statement, V: set<Variable >)
set<Slide >
reads =
requires Valid(S) A Core(S)
ensures V s e s in SlidesOf(S, V) —
ValidLabel (SlideLabel(s), S) A
—IsEmptyAssignment (slipOf (S, SlideLabel(s)))

SlidesOfRec(S, V, [])

function SlidesOfRec(S: Statement, V: set<Variable >,

Appendix A. Appendix

I: Label): (slides: set<Slide >)

reads =

requires Valid(S) A requires Core(S)

ensures V s e s in slides —
ValidLabel (SlideLabel(s), S) A
—IsEmptyAssignment (slipOf (S, SlideLabel(s)))

match S {
case Skip = {}
case Assignment(LHS,RHS) =
set v | v in V = setOf(LHS) o (1, v)
case SeqComp(S1,S52) =
SlidesOfRec(S1, V, 1+[1]) + SlidesOfRec(S2, V, 1+[2])
case IF(BO,Sthen, Selse) =
SlidesOfRec(Sthen, V, 1+[1]) + SlidesOfRec(Selse, V, 1+[2])
case DO(B,Sloop) =
SlidesOfRec (Sloop, V, 1+[1])
}
}

function UsedVars(S: Statement, 1: Label): set<Variable>
requires Valid(S) A Core(S)
requires ValidLabel(l, S)

var slipOfS := slipOf(S, 1);

match S {
case Assignment(LHS,RHS) = set v | v in GetRHSVariables (RHS)
case SeqComp(S1,S52) = {}
case [F(B,Sthen,Selse) = set v | v in B.1
case DO(B,S0) = set v | v in B.1
case Skip = {}
}
}

function GetRHSVariables(seqExp: seq<Expression>): set<Variable>

{

if seqExp = [] then {}

else seqExp[0].1 + GetRHSVariables(seqExp[1..])
}

function SlideDGStatement(slideDG: SlideDG): Statement { slideDG.0 }
function SlideDGSlides(slideDG: SlideDG): set<Slide> { slideDG.1 }

function SlideDGMap (slideDG: SlideDG):
map<Slide , set<Slide>> { slideDG.2 }

A.1.3 VarSlides functions

function VarSlideVariable(s: VarSlide): Variable { s.0 }
function VarSlideTag(s: VarSlide): VarSlideTag { s.1 }
function VarSlideLabels(s: VarSlide, S: Statement): set<Label>
requires Valid(S) A Core(S)
requires s in VarSlidesOf(S, def(S))

var assignmentLabels := VarSlideAssignmentLabels(s, S, []);

assignmentLabels +
set 1 | ((V 1’ e 1’ in assignmentLabels = 1 < 17) A

Appendix A. Appendix

(IsDO(slipOf (S, 1)) V IsIF(slipOf(S, 1))))
}

function VarSlideAssignmentLabels(s: VarSlide, S: Statement,
1: Label): set<Label>
reads =
requires Valid (S) A Core(S)
requires ValidLabel(l, S)
requires s in VarSlidesOf (S, def(S))

match S {
case Assignment(LHS,RHS) =
if VarSlideVariable(s) in LHS then {1} else {}
case Skip = {}
case SeqComp(S1,S52) =

VarSlideAssignmentLabels(s, S1, 1 + [1]) +
VarSlideAssignmentLabels(s, S2, 1 + [2])

case IF(B0O,Sthen, Selse) =
VarSlideAssignmentLabels (s, Sthen, 1 + [1]) +
VarSlideAssignmentLabels(s, Selse, 1 + [2])

case DO(B,Sloop) =
VarSlideAssignmentLabels (s, Sloop, 1 + [1])
}
}

function VarSlidesOf(S’: Statement, V: set<Variable >):
set<VarSlide>

reads =
requires Valid(S’) A Core(S’)

match S’
case Skip = {}
case Assignment(LHS,RHS) =
set v | v in setOf(LHS) e (v, Regular)
case SeqComp(S1,S52) =
if IsDO(S2) then
assert IsAssignment(S1);
match S1
case Assignment(LHS,RHS) =
(set v | v in setOf(LHS) e (v, Phi)) + VarSlidesOf(S2, V)
else
VarSlidesOf(S1, V) + VarSlidesOf(S2, V)
case IF(BO,Sthen, Selse) =
assert IsSeqComp (Sthen);
match Sthen
case SeqComp(S1,S2) =
assert IsAssignment(S2);
match S2
case Assignment(LHS,RHS) =
((set v | v in setOf(LHS) e (v, Phi)) + VarSlidesOf(S1, V) +
assert IsSeqComp(Selse);
match Selse
case SeqComp(S1’,S2") =
assert IsAssignment(S27);
match S2’
case Assignment(LHS’ ,RHS") =
(set v | v in setOf(LHS’) e (v, Phi)) + VarSlidesOf(S1’, V))
case DO(B,Sloop) =
assert IsSeqComp (Sloop);
match Sloop
case SeqComp(S1,S52) =
assert IsAssignment(S2);
match S2

Appendix A. Appendix 49

case Assignment(LHS,RHS) =
(set v | v in setOf(LHS) e (v, Phi)) + VarSlidesOf(S1, V)
}

function VarSlideDGStatement(varSlideDG: VarSlideDG):
Statement { varSlideDG.0 }

function VarSlideDGVarSlides (varSlideDG: VarSlideDG):
set<VarSlide> { varSlideDG.1 }

function VarSlideDGMap (varSlideDG: VarSlideDG):
map<VarSlide, set<VarSlide>> { varSlideDG.2 }

A.14 Graphs correspondence functions

function VarLabelOf(S: Statement, S’: Statement, 1: Label,
XLs: seq<set<Variable>>, X: seq<Variable>): Label
reads =
requires Valid(S) A Valid(S’)
requires Core(S) A Core(S’)
requires ValidLabel(l, S)
requires ValidXLs(glob(S), XLs, X)
requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))
requires MatchingSlipsToSSA(S, [], S’, [])
ensures ValidLabel(VarLabelOf(S, S’, 1, XLs, X), S’)

match S {
case Skip =
assert IsSkip(S’);
assert 1 = [];
[]
case Assignment(LHS,RHS) =
assert IsAssignment(S’);
assert 1 = [];
[]
case SeqComp(S1,S52) =
assert IsSeqComp(S”);
if 1 = [] then [] else
match S’ {
case SeqComp(S1’,S2") =
if 1[0] =1 then [1] + VarLabelOf(S1, S1’, 1[1..], XLs, X)
else [2] + VarLabelOf(S2, S2’, 1[1..], XLs, X)
}
case IF(BO,Sthen, Selse) =
assert IsIF(S’);
if 1 = [] then [] else
match S’ {
case IF(BO’,Sthen’,bSelse’) =
if 1[0] = 1 then [1,1] + VarLabelOf(Sthen, Sthen’, 1[1..], XLs, X)
else [2,1] + VarLabelOf(Selse, Selse’, 1[1..], XLs, X)
}
case DO(B,Sloop) =
assert IsSeqComp(S”’);
if 1 = [] then [] else
match S’ {
case SeqComp(S1’,527) =
assert IsDO(S2");
match S2’ {
case DO(B’,Sloop’) =
[2,1,1] + VarLabelOf(Sloop, Sloop’, 1[1..], XLs, X)
}
}

Appendix A. Appendix 50

}
}

predicate MatchingSlipsToSSA (S: Statement, 1: Label,
S’: Statement, 1’: Label)
reads =
requires Valid(S) A Valid(S”")
requires Core(S) A Core(S’)
requires ValidLabel(1l, S)
requires ValidLabel(l’, S")

var slipOfS := slipOf(S, 1);
var slipOfS’ := slipOf(S’, 17);

match slipOfS {
case Skip = IsSkip (slipOfS”’)
case Assignment(LHS,RHS) = IsAssignment(slipOfS ")
case SeqComp(S1,S52) = IsSeqComp (slipOfS ")
case IF(B,Sthen, Selse) = IsIF(slipOfS’) A
match slipOfS~ {
case [IF(B’,Sthen’,6Selse’) =
IsSeqComp (Sthen ’) A IsSeqComp(Selse ')
J
case DO(B,Sloop) = IsSeqComp (slipOfS ") A
match slipOfS”’~ {
case SeqComp(S1’,S2") =
IsAssignment(S1”) A IsDO(S27) A
match S22’ |{
case DO(B’, Sloop’) = IsSeqComp (Sloop ")
}
}
}
}

predicate MatchingSlipsFromSSA(S’: Statement, 1’: Label,
S: Statement, 1: Label)
reads =
requires Valid(S) A Valid(S’)
requires Core(S) A Core(S’)
requires ValidLabel(l, S)
requires ValidLabel(1’, S’)
{
MatchingSlipsToSSA(S, 1, S’, 1)
}

function InstanceOf(S’: Statement, 1’: Label, v: Variable,
XLs: seq<set<Variable>>, X: seq<Variable >,
globS: set<Variable>): Variable
reads =
requires Valid(S’) A Core(S’)
requires ValidXLs(globS, XLs, X)
requires ValidLabel(l’, S’)

if 17 = [] then
assert IsAssignment(S’);
var v’ :| v’ in setOf(GetLHS(S’)) * InstancesOf(S’, v, X, XLs, globS);
v’
else
match S’ {
case SeqComp(S1’,52") =
if 1’[0] =1 then InstanceOf(S1’, 1’[1..], v, XLs, X, globS)
else InstanceOf(S2”, 17[1..], v, XLs, X, globS)
case IF(BO’,Sthen’,Selse’) =

Appendix A. Appendix 51

if 1’[0] = 1 then InstanceOf(Sthen’, 1’[1..], v, XLs, X, globS)
else InstanceOf(Selse’, 1’[1..], v, XLs, X, globS)
case DO(B’,Sloop”) =
InstanceOf(Sloop’, 1’[1..], v, XLs, X, globS)
}
}

function InstancesOf(S: Statement, v: Variable, X: seq<Variable>,
XLs: seq<set<Variable>>, globS: set<Variable>): set<Variable>
requires ValidXLs(globS, XLs, X)

if X =[] then {}

else if X[0] = v then XLs[O0]

else InstancesOf(S, v, X[1..], XLs[1..], globS)
}

predicate ValidXLs(globS: set<Variable>, XLs: seq<set<Variable>>,
X: seq<Variable >)
{
IXI = IXLsl A
(Vi,j @« 0<i<j<IXLsl = XLs[i] /) XLs[j]) A
(Vs o s in XLs = s /1 globS)
}

function Rename(S’: Statement, XLs: seq<set<Variable>>, X: seq<Variable>,
globS: set<Variable >): Statement
reads =
requires Valid(S’) A Core(S’)
requires ValidXLs(globS, XLs, X)
ensures Valid (Rename(S’, XLs, X, globS)) A
Core(Rename(S’, XLs, X, globS))

match S’ {
case Assignment(LHS,RHS) =
RenameAssignment(LHS, RHS, XLs, X, globS)
case SeqComp(S1,S52) =
SeqComp (Rename (S1, XLs, X, globS), Rename(S2, XLs, X, globS))
case IF(B0O,Sthen, Selse) =
IF (RenameBoolExp (B0, XLs, X),
Rename(Sthen, XLs, X, globS), Rename(Selse, XLs, X, globS))
case DO(B,S1) =
DO(RenameBoolExp (B, XLs, X), Rename(S1, XLs, X, globS))
case Skip = Skip
}
}

function RemoveEmptyAssignments(S: Statement): Statement
requires Core(S) A Valid(S)
{
match S {
case Assignment(LHS,RHS) =
if ILHS| = 0 then Skip else S
case SeqComp(S1,S52) =
if IsEmptyAssignment(S1) then
RemoveEmptyAssignments (S2)
else if IsEmptyAssignment(S2) then
RemoveEmptyAssignments (S1)
else
SeqComp (RemoveEmptyAssignments (51),
RemoveEmptyAssignments (S2))
case IF(BO,Sthen, Selse) =
IF (B0, RemoveEmptyAssignments(Sthen),
RemoveEmptyAssignments(Selse))

Appendix A. Appendix 52

}

case DO(B,S1) =

DO(B, RemoveEmptyAssignments(S1))
case Skip = Skip
}

predicate IsEmptyAssignment(S: Statement)

{
}

requires Valid(S) A Core(S)

IsAssignment(S) A |GetLHS(S)l =0

predicate NoEmptyAssignments(S: Statement)

}

reads =
requires Valid(S) A Core(S)

match S {
case Assignment(LHS,RHS) =
LHS # [] A RHS # []
case SeqComp(S1,S2) =
NoEmptyAssignments (S1) A NoEmptyAssignments(S2)
case IF(BO,Sthen, Selse) =
NoEmptyAssignments (Sthen) A NoEmptyAssignments(Selse)
case DO(B,S1) =
NoEmptyAssignments (S1)
case Skip = true

}

predicate NoSelfAssignments(S: Statement)

}

reads =
requires Valid(S) A Core(S)

match S {
case Assignment(LHS,RHS) =
NoSelfAssignmentsInAssignment (LHS, RHS)
case SeqComp(S1,S52) =
NoSelfAssignments (S1) A NoSelfAssignments(S2)
case IF(BO,Sthen, Selse) =
NoSelfAssignments (Sthen) A NoSelfAssignments (Selse)
case DO(B,S1) =
NoSelfAssignments (S1)
case Skip = true

}

predicate NoSelfAssignmentsInAssignment(LHS: seq<Variable >,

RHS: seq<Expression >)
reads =
requires Valid (Assignment(LHS, RHS))

if LHS = [] then true

else
if LHS[0] = GetFirstVariableInRHS(RHS[0]) then false
else NoSelfAssignmentsInAssignment(LHS[1..], RHS[1..])

A.2 Full proofs of theorems and lemmas

function RF(S’: Statement, v’: Variable): set<VarSlide>

reads =

Appendix A. Appendix 53

requires Valid(S’) A Core(S’)
{
if v & def(S’) then {}
else
var varSlides := VarSlideDGVarSlides (VarSlideDGOf(S"));
var vSlide := VarSlideOfInstance(S’, v’);

if VarSlideTag(vSlide) = Regular then {vSlide}

else
var instances := VarSlidelnstances(vSlide, S”);
(set i | i in instances A i in def(S’) A

VarSlideTag(VarSlideOfInstance(S’, i)) = Regular e
VarSlideOfInstance(S’, i)) +
(set i1, i2 | il in instances A il in def(S’) A
VarSlideTag(VarSlideOfInstance(S’, il)) = Phi A
i2 in RF(S’, il) e 1i2)
}

function VarSlideOfInstance(S’: Statement, v’: Variable): VarSlide
reads =
requires Valid(S’) A Core(S’)
requires v’ in def(S’)

var varSlideDG := VarSlideDGOf(S");
var varSlides := VarSlideDGVarSlides (varSlideDG);
var vSlide :| vSlide in varSlides A VarSlideVariable(vSlide) = v’;
vSlide
}

function VarSlidelnstances(vSlide: VarSlide, S’: Statement): set<Variable>
reads =
requires Valid(S’) A Core(S’)
requires vSlide in VarSlidesOf(S’, def(S’))

(set 1”7, i | 1’ in VarSlideLabels(vSlide, S’) A
IsAssignment (slipOf(S”", 17)) A
i in UsedVarsFor(S’, 1’, VarSlideVariable(vSlide)) e i)
}

function statementSize(S: Statement): nat
reads =
requires Valid(S) A Core(S)
decreases S

match S {
case Skip = 1
case Assignment(LHS, RHS) = 1
case SeqComp(S1,S52) =
1 + statementSize(S1) + statementSize (S2)
case IF(BO,Sthen, Selse) =
1 + statementSize (Sthen) + statementSize (Selse)
case DO(B,Sloop) =
1 + statementSize (Sloop)
}
}

A.21 Reaching Definitions and Liveness for exit

lemma ReachingAndLivenessForExit(S: Statement, S’: Statement, v: Variable,
l1: Label, v’: Variable, 1’: Label, XLs: seq<set<Variable>>,
X: seq<Variable>, V’: set<Variable >)
requires Valid(S) A Valid(S’)

Appendix A. Appendix

requires Core(S) A Core(S’)

requires ValidLabel(l, S)

requires ValidLabel(1’, S7)

requires ValidXLs(glob(S), XLs, X)

requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S))) =S
requires v’ in LiveOnExit(S’, V', 1)

requires 1’ = VarLabelOf(S, S’, 1, XLs, X)

requires MatchingSlipsToSSA(S, 1, S, 17)

requires v’ in InstancesOf(S’, v, X, XLs, glob(S))
requires Onelivelnstance(S, S’, v, 1, v, 17, XLs, X, V')
ensures varSlidesOfRDOUT(S, S’, v, 1, XLs, X) = RE(S’, v’)
decreases S, distanceFromEntryForExit(S, 1)

if v ¢ def(slipOf(S, 1)) {
calc {
RF(S’, v’);
= { assert v’ in LiveOnEntryFor(S’, V', 1’) by {
RLExitL1(S, S’, V', 1, 1’, v, v', XLs, X); }
ReachingAndLivenessForEntry(S, S’, v, 1, v’, 17, XLs, X, V’); }
varSlidesOfRDIN (S, S’, v, 1, XLs, X);
= { assert ReachingDefinitionsInFor(S, 1, v) =
ReachingDefinitionsOutFor (S, 1, v) by { RLExitL2(S, 1, v); } }
varSlidesOfRDOUT(S, S’, v, 1, XLs, X);
}
}
else {
match slipOf(S, 1) {
case Skip = assert false;
case Assignment(LHS, RHS) =
assert {(v, 1)} = ReachingDefinitionsOutFor (S, 1, v) by {
RLExitL3(S, 1, v); }
var slide := (1, v);
var varSlide := VarSlideOf(S, S’, slide, XLs, X);
assert {varSlide} = RF(S’, v’) by {
RLExitL4(S, S’, 1, 17, varSlide, v, v’, XLs, X); }
case SeqComp(S1,S52) =
calc |{
RE(S", v’);
= { assert v’ in LiveOnExit(S’, V', 1'+[2]) by {
RLExitL5(S, s’, v/, 1, 17, v', XLs, X); }
ReachingAndLivenessForExit(S, S’, v, 1+[2],
v, 17+[2], XLs, X, V"), }
varSlidesOfRDOUT(S, S’, v, 1+[2], XLs, X);
{ RLExitL6(S, S’, 1, v, XLs, X); }
varSlidesOfRDOUT(S, S’, v, 1, XLs, X);
}
case IF(B0O,Sthen, Selse) =
var ThenPhiLabel := 1'+[1,2];
var vI’ :| vI’ in GetCorrespondingExpression (
GetLHS(slipOf(S’, ThenPhiLabel)),
GetRHS(slipOf (S’, ThenPhiLabel)), v’).1;
var ElsePhiLabel := 1'+[2,2];
var vE’ :| vE’ in GetCorrespondingExpression (
GetLHS (slipOf(S’, ElsePhiLabel)),
GetRHS(slipOf(S’, ElsePhilLabel)), v’).1;

calc {
RE(S", v’);
= { RLExitL7(S’, V', 17, v’, ThenPhilLabel, vT’,
ElsePhiLabel, vE"); }
RF(S’, vT’) + RE(S’, vE’);
= { assert vI’ in LiveOnExit(S’, V', 1'+[1,1]) by {
RLExitL8(S’, V', 17, v', vT'); }

Appendix A. Appendix

ReachingAndLivenessForExit(S, S’, v, 1+[1],
vI’, 1'+[1,1], XLs, X, V’);
assert varSlidesOfRDOUT(S, S’, v, 1+[1], XLs, X) =
RF(S’, vT"); }
varSlidesOfRDOUT (S, S’, v, 1+[1], XLs, X) + RF(S’, vE’);
= { assert vE’ in LiveOnExit(S’, V', 1'+[2,1]) by {
RLExitL9(S’, V', 17, v’, vE"); }
ReachingAndLivenessForExit(S, S’, v, 1+[2],
vE’, 1’+[2,1], XLs, X, V’);
assert varSlidesOfRDOUT(S, S’, v, 1+[2], XLs, X) =
RF(S", vE'); }
varSlidesOfRDOUT (S, S’, v, 1+[1], XLs, X) +
varSlidesOfRDOUT(S, S’, v, 1+[2], XLs, X);
= { RLExitL10(S, S’, 1, v, v’, XLs, X); }
varSlidesOfRDOUT(S, S’, v, 1, XLs, X);
}
case DO(B,Sloop) =
var InitPhilLabel := 1"+[1];
var vI’ :| vI’ in GetCorrespondingExpression (
GetLHS(slipOf(S’, InitPhiLabel)),
GetRHS (slipOf(S’, InitPhiLabel)), v’).1;
var BodyPhilLabel := 1'+[2,1,2];
var vB’ :| vB’ in GetCorrespondingExpression (
GetLHS (slipOf(S’, BodyPhiLabel)),
GetRHS (slipOf(S’, BodyPhilLabel)), v’).1;

calc {
RE(S", v’);
= { RLExitL11(S’, V', 17, v’, InitPhiLabel, vI’,
BodyPhiLabel, vB"); }
RE(S’, vI’) + RF(S’, vB");
= { assert vI’ in LiveOnEntryFor(S’, V',
RLExitL12(S", V', 17, v', vI’); }
ReachingAndLivenessForEntry(S, S’, v, 1, vI’, 1’, XLs, X, V’);
assert varSlidesOfRDIN(S, S’, v, 1, XLs, X) = RF(S’, vI’); }
varSlidesOfRDIN(S, S’, v, 1, XLs, X) + RF(S’, vB’);
= { assert vB’ in LiveOnExit(S’, V', 1'+[2,1,1]) by {
RLExitL13(S’, V', 17, v', vB’); }
ReachingAndLivenessForExit(S, S’, v, 1+[1],
vB’, 1"+[2,1,1], XLs, X, V’);
assert varSlidesOfRDOUT(S, S’, v, 1+[1], XLs, X) =
RF(S’, vB"); }
varSlidesOfRDIN (S, S’, v, 1, XLs, X) +
varSlidesOfRDOUT(S, S’, v, 1+[1], XLs, X);
{ RLExitL14(S, s’, v’, 1, 17, v, v', XLs, X); }
varSlidesOfRDOUT(S, S’, v, 1, XLs, X);
}
}
}

17) by |

}

function varSlidesOfRDOUT (S: Statement, S’: Statement, v: Variable,
1: Label, XLs: seq<set<Variable>>, X: seq<Variable>): set<VarSlide>
reads =
requires Valid(S) A Valid(S’)
requires Core(S) A Core(S’)
requires ValidXLs(glob(S), XLs, X)
requires ValidLabel(l, S)
requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))

(set pair | pair in ReachingDefinitionsOutFor(S, 1, v) e
var slide := (pair.1, pair.0); VarSlideOf(S, S’, slide, XLs, X))

Appendix A. Appendix

56

function distanceFromEntryForExit(S: Statement, 1: Label):

reads =
requires Valid(S) A Core(S) A ValidLabel(1l, S)
decreases S

if 1 = [] then 2+statementSize(S)

else
assert —IsSkip(S) A —IsAssignment(S);
match S {

case SeqComp(S1,S52) =

nat

if 1[0] =1 then 1 + distanceFromEntryForExit(S1, 1[1..])

else 1 + 2x+statementSize(S1) + distanceFromEntryForExit(S2, 1[1..

case IF(BO,Sthen, Selse) =

if 1[0] = 1 then 1 + distanceFromEntryForExit(Sthen, 1[1..]) else

D

1 + 2xstatementSize (Sthen) + distanceFromEntryForExit(Selse, 1[1..])

case DO(B,Sloop) =
1 + distanceFromEntryForExit(Sloop, 1[1..])
}
}

predicate OnelLivelnstance(S: Statement, S’: Statement, v:

Variable,

l1: Label, v’: Variable, 1’: Label, XLs: seq<set<Variable>>,

X: seq<Variable>, V’: set<Variable >)
reads =

requires Valid(S) A Valid(S’)
requires Core(S) A Core(S’)

requires ValidLabel(l, S)

requires ValidLabel(1’, S7)

requires ValidXLs(glob(S), XLs, X)

requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S))) =S

requires 1’ = VarLabelOf(S, S’, 1, XLs, X)
requires v’ in InstancesOf(S’, v, X, XLs, glob(S))
requires v’ in LiveOnExit(S’, V', 1)
{
V u’ e u’ in InstancesOf(S’, v, X, XLs, glob(S)) A

u’ # v’ A IsAssignment(slipOf(S’, 1’)) = u’ ¢ GetLHS(slipOf(S’, 1))

}

A.2.2 Reaching Definitions and Liveness for entry

lemma ReachingAndLivenessForEntry(S: Statement, S’: Statement,

v: Variable, 1: Label, v’: Variable, 1’: Label,

XLs: seq<set<Variable>>, X: seq<Variable>, V’: set<Variable >)

requires Valid(S) A Valid(S’)
requires Core(S) A Core(S’)
requires ValidLabel(l, S)
requires ValidLabel(l’, S’)
requires ValidXLs(glob(S), XLs, X)

requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S))) =S

requires v’ in LiveOnEntryFor(S’, V', 1)
requires 1’ = VarLabelOf(S, S’, 1, XLs, X)
requires MatchingSlipsToSSA(S, 1, S7, 17)
requires v’ in InstancesOf(S’, v, X, XLs, glob(S))

ensures varSlidesOfRDIN(S, S’, v, 1, XLs, X) = RF(S’, v’)

decreases S, distanceFromEntryForEntry (S, 1)

if 1 =11 {
var emptySet := {};
cale {
RE(S’, v');
= { assert v’ ¢ def(S’) by { RLEntryL1(S", V', v’);

Appendix A. Appendix

57

emptySet;
= { assert ReachingDefinitionsInFor (S, [], v) = {}; }
varSlidesOfRDIN (S, S’, v, 1, XLs, X);

}
J

else

{

var 11, ¢ :| 11 + [c] = 1;
match slipOf(S, 11) {
case SeqComp(S1,S52) =

var 11’ := VarLabelOf(S, S’, 11, XLs, X);

assert 11’ + [c] =1";
assert IsSeqComp (slipOf(S’, 117));
if c =1 {
calc {
RE(S’, v’);

}

else

}

}

{ assert v’ in LiveOnEntryFor(S’, V', 117) by ({
RLEntryL2(S", V', 117, 1, v’); }
ReachingAndLivenessForEntry (S, S’, v, 11,
v, 117, XLs, X, V'), }
varSlidesOfRDIN (S, S’, v, 11, XLs, X);
{ RLEntryL3(S, S’, 1, 11, v, XLs, X); |
varSlidesOfRDIN (S, S’, v, 1, XLs, X);

{

assert ¢ = 2;
calc {

}

RE(S’", v’);

{ assert v’ in LiveOnExit(S’, V', 117+[1]) by ({
RLEntryL4(S’, V', 117, 17, v’); }

ReachingAndLivenessForExit(S, S’, v, 11+[1],

v’', 117+[1], XLs, X, V’); }

varSlidesOfRDOUT(S, S’, v, 11+[1], XLs, X);

{ RLEntryL5(S, S’, 1, 11, v, XLs, X); }

varSlidesOfRDIN (S, S’, v, 11+[2], XLs, X);

{ assert 1 =11 + [2]; }

varSlidesOfRDIN (S, S’, v, 1, XLs, X);

case IF(BO,Sthen, Selse) =
var 11’ := VarLabelOf(S, S’, 11, XLs, X);
assert 11" + [c,1] =1"7;
assert IsIF(slipOf(S’, 117));

calc

}

{

RF(S", v’);

{

assert v’ in LiveOnEntryFor(S’, V', 11’) by {
RLEntryL6(S’, V', 117, 17, v’'); |}

ReachingAndLivenessForEntry (S, S’, v, 11,
v', 117", XLs, X, V"), }

varSlidesOfRDIN (S, S’, v, 11, XLs, X);

{

RLEntryL7(S, S, 1, 11, v, XLs, X); }

varSlidesOfRDIN (S, S’, v, 1, XLs, X);

case DO(B,Sloop) =
var 11’ := VarLabelOf(S, S’, 11, XLs, X);
assert 11" + [2,1,1] =1"7;
assert IsSeqComp (slipOf(S’, 117));

if (v in def(slipOf(S, 1))) {

var Sloop’ := slipOf(S’, 17);

var InitPhiLabel := 11 "+[1];

var vI’ :| vI’ in GetCorrespondingExpression (

GetLHS(slipOf(S’, InitPhiLabel)),

Appendix A. Appendix

58

GetRHS(slipOf(S’, InitPhiLabel)), v’).1;
var BodyPhilLabel := 11"+[2,1,2];
var vB’ :| vB’ in GetCorrespondingExpression (
GetLHS(slipOf(S’, BodyPhiLabel)),
GetRHS(slipOf(S’, BodyPhilLabel)), v’).1;

calc {
RE(S", v’);
= { RLEntryL8(S’, V', 117, v/,
InitPhiLabel , vlI’, BodyPhiLabel, vB"); }
RF(S’, vI’) + RF(S’, vB’);
= { assert vl’ in LiveOnEntryFor(S’, V', 11’) by {
RLEntryL9(S”, V', 117, 17, v’, vI’); }
ReachingAndLivenessForEntry(S, S’, v, 11,
vi’, 117, XLs, X, V’);
assert varSlidesOfRDIN(S, S’, v, 11, XLs, X) =
RE(S’, vI’); }
varSlidesOfRDIN(S, S’, v, 11, XLs, X) + RF(S’, vB’);
= { assert vB’ in LiveOnExit(S’, V', 1) by {
RLEntryL10(S’, V', 117, 1’, v', vB"); |
assert 117 + [2,1,1] =1";
ReachingAndLivenessForExit(Sloop, Sloop’, v, [],
vB’, [1, XLs, X, {vB'});
assert varSlidesOfRDOUT (Sloop, Sloop’, v, [], XLs, X) =
RF(Sloop’, vB’);
assert RF(S’, vI’) + RF(Sloop’, vB’) = RF(S’, vB’); |
varSlidesOfRDIN(S, S’, v, 11, XLs, X) +
varSlidesOfRDOUT (Sloop , Sloop’, v, [], XLs, X);
= { RLEntryL11(S, S’, Sloop, Sloop’, V', 11, 1, v, XLs, X); }
varSlidesOfRDIN (S, S’, v, 1, XLs, X);
}
}

else {
calc {
RE(S", v’);
= { assert v’ in LiveOnEntryFor(S’, V', 11") by {
RLEntryL12(S’, V', 117, 17, v’); }
ReachingAndLivenessForEntry (S, S’, v, 11,
v, 117, XLs, X, V’); }
varSlidesOfRDIN(S, S’, v, 11, XLs, X);
= { RLEntryL13(S, S’, 1, 11, v, XLs, X); }
varSlidesOfRDIN (S, S’, v, 1, XLs, X);

function varSlidesOfRDIN (S: Statement, S’: Statement, v: Variable,
1: Label, XLs: seq<set<Variable>>, X: seq<Variable>): set<VarSlide>
reads =
requires Valid(S) A Valid(S’)
requires Core(S) A Core(S’)
requires ValidXLs(glob(S), XLs, X)
requires ValidLabel(l, S)
requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))

(set pair | pair in ReachingDefinitionsInFor(S, 1, v) e
var slide := (pair.1, pair.0); VarSlideOf(S, S’, slide, XLs, X))
}

function distanceFromEntryForEntry(S: Statement, 1: Label): nat
reads =

Appendix A. Appendix 59

requires Valid(S) A Core(S) A ValidLabel(1l, S)
decreases S

if 1 = [] then 1

else
assert —IsSkip(S) A —IsAssignment(S);
match S {

case SeqComp(S1,S52) =

if 1[0] = 1 then 1 + distanceFromEntryForEntry(S1, 1[1..])

else 1 + 2x+statementSize(S1) + distanceFromEntryForEntry(S2, 1[1..])
case IF(BO,Sthen, Selse) =

if 1[0] = 1 then 1 + distanceFromEntryForEntry (Sthen, 1[1..])

else 1 + 2xstatementSize (Sthen) +

distanceFromEntryForEntry (Selse, 1[1..])

case DO(B,Sloop) =

1 + distanceFromEntryForEntry (Sloop, 1[1..])
}

A.2.3 Identical Skip Slips
Lemma 11 (LemmaldenticalSkipSlips).

lemma LemmaldenticalSkipSlips(S: Statement, S’: Statement,

V: set<Variable>, SV: Statement, res: Statement, SV’: Statement,
V’: set<Variable >, XLs: seq<set<Variable>>, X: seq<Variable >,
1: Label, slidesSV: set<Slide >, varSlidesSV: set<VarSlide >)
requires Valid(S) A Valid(SV) A Valid(SV’) A Valid(res)
requires Core(S) A Core(SV) A Core(SV’) A Core(res)
requires SliceOf(S,V).1 =SV
requires RemoveEmptyAssignments(Rename(SV’, XLs, X, glob(res))) = res
requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(res))) =S
requires V Sm e Sm in slidesSV <= (Sm in SlidesOf(S, def(S))

A dSn e Sn in FinalDefSlides(S, V) A

SlideDGReachable (SlideDGOf(S), Sm, Sn, SlideDGSlides (SlideDGOf(S))))
requires V vSlide e vSlide in varSlidesSV —

(vSlide in VarSlidesOf(S’, def(S)) A

3 Sn: VarSlide e VarSlideVariable(Sn) in V' A

VarSlideDGReachable (VarSlideDGOf(S’) , vSlide,

Sn, VarSlideDGVarSlides (VarSlideDGOf(S"))))

requires V slide e slide in SlideDGSlides (SlideDGOf(S)) =

(slide in slidesSV <=

VarSlideOf (S, S’, slide, XLs, X) in varSlidesSV)

requires ValidLabel(l, S) A ValidLabel(l, SV) A ValidLabel(l, res)
requires MatchingSlips(S, res, 1)
ensures IsSkip (slipOf(SV, 1)) <= IsSkip(slipOf(res, 1))

assert IsSkip (slipOf(SV, 1)) <= IsSkip(slipOf(res, 1)) by {
if (IsSkip (slipOf(SV, 1)))
{
LemmaldenticalSkipSlipsA(S, S’, V, SV, res, SV’,
V', XLs, X, 1, slidesSV, varSlidesSV);
}
else
{
LemmaldenticalSkipSlipsB(S, S’, V, SV, res, SV’,
V', XLs, X, 1, slidesSV, varSlidesSV);

}

lemma LemmaldenticalSkipSlipsA (S: Statement, S’: Statement,

Appendix A. Appendix 60

V: set<Variable >, SV: Statement, res: Statement, SV’: Statement,
V’: set<Variable >, XLs: seq<set<Variable>>, X: seq<Variable>,
1: Label, slidesSV: set<Slide >, varSlidesSV: set<VarSlide >)
requires Valid(S) A Valid(SV) A Valid(SV’) A Valid(res)
requires Core(S) A Core(SV) A Core(SV’) A Core(res)
requires SliceOf(S,V).1 =SV
requires RemoveEmptyAssignments(Rename(SV’, XLs, X, glob(res))) = res
requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(res))) =S
requires V Sm e Sm in slidesSV <= (Sm in SlidesOf(S, def(S))

A dSn e Sn in FinalDefSlides(S, V) A

SlideDGReachable (SlideDGOf(S), Sm, Sn, SlideDGSlides (SlideDGOf(S))))
requires V vSlide e vSlide in varSlidesSV =

(vSlide in VarSlidesOf(S’, def(S)) A

3 Sn: VarSlide e VarSlideVariable(Sn) in V' A

VarSlideDGReachable (VarSlideDGOf(S ") , vSlide,

Sn, VarSlideDGVarSlides (VarSlideDGOf(S"))))

requires V slide e slide in SlideDGSlides(SlideDGOf(S)) =

(slide in slidesSV <=

VarSlideOf(S, S’, slide, XLs, X) in varSlidesSV)

requires ValidLabel(l, S) A ValidLabel(l, SV) A ValidLabel(l, res)
requires MatchingSlips (S, res, 1)
requires IsSkip (slipOf(SV, 1))
ensures IsSkip (slipOf(res, 1))

var 1’ := VarLabelOf(S, SV’, 1, XLs, X);
var slidesOfSlipSV := PrefixOfSlideLabel(slidesSV, 1);
var varSlidesOfSlipSV ’" := PrefixOfVarSlideLabel(varSlidesSV, 17, SV’);

assert IsSkip (slipOf(res, 1)) by {
calc {
IsSkip (slipOf(SV, 1));
= { assert slidesOfSlipSV = {} <= IsSkip(slipOf(SV, 1)); }
slidesOfSlipSV = {};
= { assert [|slidesOfSlipSVI| = |varSlidesOfSlipSV " |; }
varSlidesOfSlipSV " = {};
— | assert varSlidesOfSlipSV "’ = {} <= IsSkip(slipOf(SV’, 17)); }
IsSkip (slipOf(SV’, 17));
— { assert MatchingSlipsFromSSA(SV’, 1, res, 1) by {
LemmaMatchingSlipsFromSSA(SV’, 17, res, 1, XLs, X); } }
IsSkip (slipOf(res, 1));
}
}
}

lemma LemmaldenticalSkipSlipsB(S: Statement, S’: Statement,

V: set<Variable>, SV: Statement, res: Statement, SV’: Statement,
V’: set<Variable >, XLs: seq<set<Variable>>, X: seq<Variable >,
I: Label, slidesSV: set<Slide >, varSlidesSV: set<VarSlide >)
requires Valid(S) A Valid(SV) A Valid(SV’) A Valid(res)
requires Core(S) A Core(SV) A Core(SV’) A Core(res)
requires SliceOf(S,V).1 =SV
requires RemoveEmptyAssignments(Rename(SV’, XLs, X, glob(res))) = res
requires RemoveEmptyAssignments(Rename(S’, XLs, X, glob(res))) =S
requires V Sm e Sm in slidesSV <= (Sm in SlidesOf(S, def(S))

A dSn e Sn in FinalDefSlides(S, V) A

SlideDGReachable (SlideDGOf(S), Sm, Sn, SlideDGSlides (SlideDGOf(S))))
requires V vSlide e vSlide in varSlidesSV —

(vSlide in VarSlidesOf(S’, def(S)) A

3 Sn: VarSlide e VarSlideVariable(Sn) in V' A

VarSlideDGReachable (VarSlideDGOf(S’) , vSlide,

Sn, VarSlideDGVarSlides (VarSlideDGOf(S’))))

requires V slide e slide in SlideDGSlides(SlideDGOf(S)) =

(slide in slidesSV <=

Appendix A. Appendix

61

VarSlideOf(S, S’, slide, XLs, X) in varSlidesSV)
requires ValidLabel(l, S) A ValidLabel(l, SV) A ValidLabel(l, res)
requires MatchingSlips (S, res, 1)
requires —IsSkip (slipOf(SV, 1))
ensures —IsSkip (slipOf(res, 1))

var 1’ := VarLabelOf(S, SV’, 1, XLs, X);
var slidesOfSlipSV := PrefixOfSlideLabel(slidesSV, 1);

var varSlidesOfSlipSV ’ := PrefixOfVarSlideLabel(varSlidesSV, 17, SV’);

assert —IsSkip (slipOf(res, 1)) by ({
calc {
—IsSkip (slipOf(SV, 1));
—> { assert slidesOfSlipSV = {} <= IsSkip (slipOf(SV, 1)); }}
slidesOfSlipSV # {};
= { assert |slidesOfSlipSV | = |varSlidesOfSlipSV " I; }
varSlidesOfSlipSV " # {};
— | assert varSlidesOfSlipSV "’ = {} <<= IsSkip(slipOf(SV’, 17));
—IsSkip (slipOf(SV’, 17));
— { LemmaRenameSkip(slipOf(SV’, 1), XLs
X, glob(slipOf(res, 1))); }
—IsSkip (Rename(slipOf(SV’, 1), XLs, X, glob(slipOf(res, 1))));
— { LemmaRemoveEmptyAssignmentsSkip (Rename(slipOf(SV’, 17),
XLs, X, glob(slipOf(res, 1)))); }
—IsSkip (RemoveEmptyAssignments (Rename (slipOf(SV’, 17), XLs,
X, glob(slipOf(res, 1)))));
= { LemmaCommutativeFromSSASlips(SV’, XLs, X, 17, 1); }
—IsSkip (slipOf (RemoveEmptyAssignments (Rename (SV’, XLs,
X, glob(res))), 1));
=—> { assert RemoveEmptyAssignments(Rename(SV’, XLs,
X, glob(res))) = res; }
—IsSkip (slipOf(res, 1));
}
}
}

A.2.4 Inverse varLabelOf

Lemma 12 (LemmalnverseVarLabel Of).

function LabelOf(S’: Statement, S: Statement, 1’: Label,
XLs: seq<set<Variable>>, X: seq<Variable>): Label
reads =
requires Valid(S) A Valid(S’)
requires Core(S) A Core(S”)
requires ValidLabel(1’, S7)
requires ValidXLs(glob(S), XLs, X)
requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))
requires MatchingSlipsFromSSA(S’, [], S, [])
ensures ValidLabel(LabelOf(S’, S, 1’, XLs, X), S)

match S’ {
case Skip =
assert IsSkip(S);
assert 1’ = [];
[]
case Assignment(LHS’ ,RHS’) =
assert IsAssignment(S) V IsSkip(S);
assert 1" = [];
[]
case SeqComp(S1’,S2") =

}

Appendix A. Appendix

}

if 17 = [] then []
else
assert IsSeqComp(S) V IsDO(S);
if IsSeqComp(S) then
match S {
case SeqComp(S1,S52) =
if 1’[0] =1 then [1] + LabelOf(S1’, S1, 17[1..], XLs, X)
else [2] + LabelOf(S2’, S2, 1’[1..], XLs, X)
}
else
assert IsDO(S2’) A IsSeqComp (GetLoopBody(S2"));
var Sloop’ := GetS1(GetLoopBody(S2"));
match S {
case DO(B,Sloop) = [1] + LabelOf(Sloop’, Sloop, 1°[3..], XLs, X)
}
case IF(BO’,Sthen’, Selse’) =
assert IsIF(S);
if 17 = [] then [] else
match S {
case IF(BO,Sthen, Selse) =
if 1’[0] = 1 then [1] + LabelOf(Sthen’, Sthen, 1'[2..], XLs, X)
else [2] + LabelOf(Selse’, Selse, 1’[2..], XLs, X)
}
}

predicate InverseVarLabelOf(S: Statement, S’: Statement, SV’: Statement,

{

}

res: Statement, XLs: seq<set<Variable>>, X: seq<Variable>)

reads =

requires Valid(S) A Valid(S’) A Valid(SV’) A Valid(res)

requires Core(S) A Core(S’) A Core(SV’) A Core(res)

requires ValidXLs(glob(S), XLs, X)

requires ValidXLs(glob(res), XLs, X)

requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))
requires MatchingSlipsToSSA(S, [], S’, [])

requires res = RemoveEmptyAssignments(Rename(SV’, XLs, X, glob(res)))
requires MatchingSlipsFromSSA (SV’, [], res, [])

vV 1, 17 e ValidLabel(l, S) A 1’ = VarLabelOf(S, S’, 1, XLs, X) A
ValidLabel(1”, S’) A ValidLabel(1’, SV’) A NoSelfAssignments(S) A
NoEmptyAssignments(S) = 1 = LabelOf(SV’, res, 1’7, XLs, X)

lemma LemmalnverseVarLabelOf(S: Statement, S’: Statement, SV’: Statement,

}

res: Statement, XLs: seq<set<Variable>>, X: seq<Variable >)

requires Valid(S) A Valid(S’) A Valid(SV’) A Valid(res)

requires Core(S) A Core(S’) A Core(SV’) A Core(res)

requires ValidXLs(glob(S), XLs, X)

requires ValidXLs(glob(res), XLs, X)

requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))
requires MatchingSlipsToSSA(S, [], S’, [1])

requires res = RemoveEmptyAssignments(Rename(SV’, XLs, X, glob(res)))
requires MatchingSlipsFromSSA (SV’, [], res, [])

ensures InverseVarLabelOf(S, S’, SV’, res, XLs, X)

vV 1, 17 | ValidLabel(1, S) A 1’ = VarLabelOf(S, S’, 1, XLs, X) A
ValidLabel(1’, S’) A ValidLabel(1’, SV’) A NoSelfAssignments(S) A
NoEmptyAssignments(S) ensures 1 = LabelOf(SV’, res, 17, XLs, X) {

LemmalnverseVarLabelOfRec(S, S’, SV’, res, 1, 17, XLs, X);
}

lemma LemmalnverseVarLabelOfRec(S: Statement, S’: Statement,

62

Appendix A. Appendix 63

SV’: Statement, res: Statement, 1: Label, 1’: Label,

XLs: seq<set<Variable>>, X: seq<Variable >)

requires Valid(S) A Valid(S’) A Valid(SV’) A Valid(res)

requires Core(S) A Core(S’) A Core(SV’) A Core(res)

requires ValidXLs(glob(S), XLs, X)

requires ValidXLs(glob(res), XLs, X)

requires S = RemoveEmptyAssignments(Rename(S’, XLs, X, glob(S)))
requires MatchingSlipsToSSA(S, [], S’, [])

requires res = RemoveEmptyAssignments(Rename(SV’, XLs, X, glob(res)))
requires MatchingSlipsFromSSA (SV’, [], res, [])

requires ValidLabel(l, S) A ValidLabel(l’, S’) A ValidLabel(1’, SV’)
requires 1’ = VarLabelOf(S, S’, 1, XLs, X)

ensures 1 = LabelOf(SV’, res, 1’, XLs, X)

match SV’ {
case Skip =
assert IsSkip(res);
assert 1’ = [];
assert 1 = [];
case Assignment(LHS’ ,RHS") =
assert IsAssignment(res) V IsSkip(res);
assert 1’ = [];
assert 1 = [];
case SeqComp(S1’,S2") =
if 17 =[] { assert 1 = []; } else {
assert IsSeqComp(res) V IsDO(res);
if IsSeqComp(res) {
var S1, S2 := GetSl(res), GetS2(res);
if 17[0] =1 {
calc {
LabelOf(SV’, res, 1’, XLs, X);
= { assert IsSeqComp(SV’) A IsSeqComp(res) A 1’[0] = 1; }
[1] + LabelOf(S1’, S1, 1’[1..], XLs, X);
{ LemmalnverseVarLabelOfRec(GetS1(S), GetS1(S’), S1’, S1,
1[1..], 1'[1..], XLs, X);
assert 1[1..] = LabelOf(S1’, S1, 1’[1..], XLs, X); }
[1] + I[1..];
= { assert 1[0] =1 by {
assert 1’ = VarLabelOf(S, S’, 1, XLs, X); } }

l;
}
}
else |
calc {
LabelOf(SV’, res, 1’7, XLs, X);
= { assert IsSeqComp(SV’) A IsSeqComp(res) A 1’[0] = 2; }
[2] + LabelOf(S2’, S2, 1’[1..], XLs, X);
{ LemmalnverseVarLabelOfRec(GetS2(S), GetS2(S"), S2’, S2,
1[1..], 1’[1..], XLs, X);
assert 1[1..] = LabelOf(S2’, S2, 1’[1..], XLs, X); }
[2] + 1[1..];
= { assert 1[0] = 2 by {
assert 1’ = VarLabelOf(S, S’, 1, XLs, X); } }

l;
}
}
}

else |{
var Sloop’ := GetS1(GetLoopBody(S2"));
var B, Sloop := GetLoopBool(res), GetLoopBody(res);
calc {
LabelOf(SV’, res, 1’, XLs, X);
= { assert IsSeqComp(SV’) A IsDO(res); }

Appendix A. Appendix

64

[1] + LabelOf(Sloop’, Sloop, 17[3..], XLs, X);
= { LemmalnverseVarLabelOfRec (GetLoopBody(S),
GetS1 (GetLoopBody (GetS2(S”))) , Sloop’, Sloop, 1[1..],
17[3..]1, XLs, X);
assert 1[1..] = LabelOf(Sloop’, Sloop, 1'[3..], XLs, X);
[1] + 1[1..];
= { assert 1[0] = 1, }
l;
}
}

}
case [F(B0’,Sthen’, Selse’) =

assert IsIF(res);
if 17 =[] { assert 1 = []; } else {
var B0, Sthen, Selse :=
GetlfBool(res), GetlfThen(res), GetlfElse(res);
if 17[0] =1 {
calc {
LabelOf(SV’, res, 1’, XLs, X);
= { assert IsIF(SV’) A IsIF(res) A 1’[0] = 1; }
[1] + LabelOf(Sthen’, Sthen, 1’[2..], XLs, X);
= { LemmalnverseVarLabelOfRec(GetlfThen(S), GetlfThen(S’),
Sthen’, Sthen, 1[1..], 17[2..], XLs, X);
assert 1[1..] = LabelOf(Sthen’, Sthen, 17[2..], XLs, X);
[1] + I[1..];
= { assert 1[0] =1 by {
assert 1’ = VarLabelOf(S, S’, 1, XLs, X); } }
l;
}
}
else |{
calc {
LabelOf(SV’, res, 1’7, XLs, X);
= { assert IsIF(SV’) A IsIF(res) A 1’[0] = 2; }
[2] + LabelOf(Selse’, Selse, 1’[2..], XLs, X);
= { LemmalnverseVarLabelOfRec(GetlfElse(S), GetlfElse(S"),
Selse’, Selse, 1[1..], 17[2..], XLs, X);
assert 1[1..] = LabelOf(Selse’, Selse, 17[2..], XLs, X);
[2] + 1[1..];
= { assert 1[0] = 2 by {
assert 1’ = VarLabelOf(S, S’, 1, XLs, X); } }

}

}

}

65

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley series in computer science / World student
series edition. Addison-Wesley, 1986.

[2] Afshar Alam and Tendai Padenga. Application software reengineering. Pearson
Education, 2010.

[3] Thomas Ball and Susan Horwitz. “Slicing Programs with Arbitrary Control-
flow”. In: Automated and Algorithmic Debugging, First International Workshop,
AADEBUG’93, Linkoping, Sweden, May 3-5, 1993, Proceedings. Ed. by Peter Frit-
szon. Vol. 749. Lecture Notes in Computer Science. Springer, 1993, pp. 206—
222

[4] Chen Cozocaru. “The slide dependence graph and its use in software evolu-
tion”. MA thesis. The Open University of Israel, 2014.

[5] Ron Cytron et al. “Efficiently Computing Static Single Assignment Form and
the Control Dependence Graph”. In: ACM Trans. Program. Lang. Syst. 13.4 (1991),
pp- 451-490.

[6] Edsger W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Deriva-
tion of Programs”. In: Commun. ACM 18.8 (1975), pp. 453-457.

[7] Ran Ettinger. “Refactoring via program slicing and sliding”. PhD thesis. Uni-
versity of Oxford, UK, 2006.

[8] Ran Ettinger, Shmuel S. Tyszberowicz, and Shay Menaia. “Efficient method ex-
traction for automatic elimination of type-3 clones”. In: IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering, SANER 2017, Kla-
genfurt, Austria, February 20-24, 2017. 2017, pp. 327-337.

[9] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program Depen-
dence Graph and Its Use in Optimization”. In: ACM Trans. Program. Lang. Syst.
9.3 (1987), pp- 319-349.

[10] Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison
Wesley object technology series. Addison-Wesley, 1999.

[11] Penny A. Grubb and Armstrong A. Takang. Software maintenance - concepts and
practice (2. ed.) World Scientific, 2003. ISBN: 978-981-238-426-3.

[12] Mark Harman, David W. Binkley, and Sebastian Danicic. “Amorphous pro-
Y, P P
gram slicing”. In: Journal of Systems and Software 68.1 (2003), pp. 45-64.

[13] Mark Harman and Robert Hierons. “An Overview of Program Slicing”. In:
Software Focus 2 (Dec. 2001).

[14] Bogdan Korel and Janusz W. Laski. “Dynamic Program Slicing”. In: Inf. Pro-
cess. Lett. 29.3 (1988), pp. 155-163.

[15] Meir M. Lehman. “On understanding laws, evolution, and conservation in the
large-program life cycle”. In: Journal of Systems and Software 1 (1980), pp. 213—
221.

BIBLIOGRAPHY 66

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Rustan M. Leino. “Developing verified programs with dafny”. In: 35th In-
ternational Conference on Software Engineering, ICSE "13, San Francisco, CA, USA,
May 18-26, 2013. Ed. by David Notkin, Betty H. C. Cheng, and Klaus Pohl.
IEEE, 2013, pp. 1488-1490. DOI: 10.1109/ICSE.2013.6606754.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of pro-
gram analysis. Springer, 1999.

Liang Tan and Christoph Bockisch. “A Survey of Refactoring Detection Tools”.
In: Workshops of the Software Engineering Conference. Ed. by Stephan Krusche et
al. Vol. 2308. CEUR-WS.org, 2019, pp. 100-105.

Frank Tip. “A survey of program slicing techniques”. In: J. Prog. Lang. 3.3
(1995).

Mark Weiser. “Program Slicing”. In: ICSE. IEEE Computer Society, 1981, pp. 439—
449.

Mark Weiser. “Programmers Use Slices When Debugging”. In: Commun. ACM
25.7 (1982), pp. 446—452.

Wolfgang Wogerer and Technische Universitdt Wien. A Survey of Static Pro-
gram Analysis Techniques. 2005.

http://dx.doi.org/10.1109/ICSE.2013.6606754

	Abstract
	Acknowledgements
	Introduction
	Goal of this thesis
	Background
	Program slicing
	Programming notations and representation
	Data flow analysis
	Slips and slides
	Slide dependence
	Dafny
	Static single assignment
	SSA-based slicing

	Contributions

	Formal framework
	Running example
	Programming notations and representation
	Program analysis
	Reaching definitions
	Liveness

	Slides
	Slide dependence graph
	Paths in a slide dependence graph

	VarSlides
	VarSlide dependence graph
	Paths in a varSlide dependence graph

	Correspondence between slideDG and varSlideDG

	Properties of slide dependence graphs
	Reaching definitions and liveness
	Reachability in the slideDG and the varSlideDG

	A novel slide-based slicing algorithm
	The algorithm
	Examples

	Proof of correctness
	Our algorithm

	Conclusion
	Appendix
	Full definitions
	Utility functions
	Slides functions
	VarSlides functions
	Graphs correspondence functions

	Full proofs of theorems and lemmas
	Reaching Definitions and Liveness for exit
	Reaching Definitions and Liveness for entry
	Identical Skip Slips
	Inverse varLabelOf

	Bibliography

