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1 Abstract

Existing large language models (LLMs) like GPT and Claude can generate basic
SVGs (Scalable Vector Graphics) based on textual descriptions. However, these
SVGs tend to be simplistic and abstract. This project aims to enhance the ability of
LLM to generate more complex, high-quality SVGs that offer realistic depictions
of everyday objects, based just on textual descriptions.

To achieve this, we developed a pipeline for generating SVGs from text. We
constructed a large, high-quality dataset consisting of triplets of textual
descriptions, raster images, and their corresponding SVG files. This dataset was
used to fine tune an LLM for the text to SVG generation task. The pipeline
involves several generative models and algorithms, such as DALL-E, Stable
Diffusion, and Flux, for image generation, and Potrace for converting raster
images into SVG format. We also experimented with prompt engineering and fine-
tuning methods to improve output quality.

For fine tuning the LLM, we used Cross-Entropy Loss for the next-token
prediction task, where the model predicts the next token in the SVG sequence. The
training process included gradient accumulation to handle larger batches. Fine
tuning on our dataset was unsuccessful due to the LLM’s small context window.
However, we successfully fine tuned with the OmniSVG dataset on icons (which
was released during our work). In the results of CLIP similarity score the model
accepts 0.3 - which means the model can capture some broad aspects, but often
miss specific details from the prompt, and for Aesthetic 4.57- which indicates the
generated SVG are pleasing visuality, they are not broken, but not detailed
enough.

We published poster about our new dataset in the The 18th ACM International
System and Storage Conference (SYSTOR "25 Posters) [13]
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2 Introduction

SVG 1s an XML based image format used to describe vector graphics. Unlike
raster images, which are composed of pixels, SVGs represent images through
mathematical paths, shapes, and colors, allowing them to scale infinitely without
losing quality. SVGs play a crucial role in modern image rendering, offering
scalable resolution, flexible usability, and easy editing. Their use is especially
widespread in web development and graphic design.

In recent years, the rapid advancement of LLMs improved their ability to generate
structured outputs from textual descriptions. However, while models such as GPT
and Claude have achieved impressive results in text to image generation,
generating vector-based graphics directly from text remains a largely unexplored
area. Unlike raster images, SVGs require a precise structural representation that
captures both visual appearance and geometric relationships.

The importance of this work lies in improving the connection between textual
input and high-quality SVG outputs using LLM, which could significantly expand
the potential applications of these models in creative and technical domains.

In this thesis, we introduce a pipeline for generating SVG outputs from textual
descriptions. Our approach involves two main components:

1. Constructs a high-quality dataset of text-image-SVG triplets, enabling the
fine-tuning of an LLM for this task.

2. Leverages the fine-tuned model to produce SVGs from textual input.

As you can see in Figure 1, the current state of the art in text-to-SVG in both
ChatGPT and Claude is not good, resulting in very abstract, even absurd
looking SVG images. This gives motivation to our work, as there seems to be a
large gap for improvement.

Prompt ChatGPT Claude

please create an SVG
of a dog

o2




Please create an SVG
of a man holding a ab ﬁ

sword, he is also
wearing a cowboy hat '

Figure 1. Comparing results of ChatGPT and Claude for asking SVG of a
specific object.

3 Tools and Techniques

During our project, we used some tools and techniques for creating the new
dataset and fine tuning

DALL-E - is a generative Al model developed by OpenAl that can create
images directly from textual descriptions. It combines methods from both
natural language processing and computer vision to produce visual content
based on user prompts. Built on a transformer architecture, DALL-E first
encodes the text input into a latent representation that captures the semantic
and stylistic meaning of the prompt. This latent representation is then decoded
by the model into a pixel-based image through a series of neural network
layers.

Potrace - is an algorithm for transforming a bitmap into a smooth, scalable
image. The input for this algorithm is a bitmap and the output is a vector image
format (like SVG).

Stable Diffusion — is a text to image model that produce image from textual
description. It does it by three steps:

1. Text Representation Generation - converts a text prompt into a text vector
representation.

2. Image Representation Refining - it starts with random noise, refines the
image representation little by little, with the guidance of the text
representation.

3. Image Upscaling - it upscales the image representation into a high-
resolution image.



LoRA - is a technique used to adapt machine learning models to new contexts
in an efficient way. It does it by adding lightweight pieces to the original
model, rather than changing the entire model. LoRA freezes the original
weights and parameters of the model as they are. Then, on top of this original
model, it adds a lightweight addition called a low-rank matrix, which is then
applied to new inputs to get results specific to the context.

FLUX - is a generative Al model that transforms descriptive text prompts into
high-quality, detailed images. It achieves state-of-the-art performance in image
quality and prompt adherence. The model is based on rectified flow
transformers, a modern technique that is generally more efficient than
traditional diffusion models.

Llama 3 — is a family of open source LLM’s. They are released in different
sizes. Llama 3 was pre trained on a larger dataset of over 15 trillion tokens of
publicly available, high-quality text and code.

4 Related Work

There are many different methods that explore the creation of SVG from textual
descriptions.

VectorFusion [1] introduced a method for generating abstract vector graphics
(SVG format) from text captions. It utilizes pre-trained Stable Diffusion, for
sampling raster image from text input, this is an image that captures the semantic
content of the text input, and then vectorizing this image. There is a two stage
pipeline: sampling an image from Stable Diffusion, then vectorizing it
automatically. Given text, we sample a raster image from Stable Diffusion. Then,
it automatically traces the raster sample to convert it to an SVG using the off-the-
shelf Layer-wise Image Vectorization program (LIVE) - which produces clean
SVGs. It utilizes score distillation sampling (SDS) loss, which encourages the
generated vector graphics to match the conditional distribution learned by the pre-
trained Stable Diffusion text-to-image diffusion model.

SVGDreamer [2] presents an optimization-based approach for generating diverse
vector graphics from text prompts. The method's process is divided into two
stages: semantic-guided vectorization of images and SVG generation using VPSD
optimization.



DiffSketcher [3] presents a method for generating vectorized sketches from text
prompts. Built on a pre-trained text-to-image diffusion model, DiffSketcher
optimizes a set of Bezier curves using an enhanced version of SDS loss. The
approach works as follows: given a text prompt y that describes the target subject
and a set of control points for strokes, it generates a sketch S that captures the
text's semantic features. To initialize stroke control points, DiffSketcher extracts
and merges attention maps from the U-Net within the latent diffusion model.

During our work, the paper OmniSVG [4] was released. They propose a unified
framework built on pre-trained vision-language models (VLMs) to perform
multimodal SVG generation (text to SVG, image to SVG, character-reference
SVGQ). They discretize SVG commands and coordinates into tokens, thereby
decoupling the structural logic of the vector graphics (e.g., commands, hierarchy)
from low-level geometry (exact coordinate values).

Our work differs from the above works as the above results focus on utilizing and
optimizing pre-trained Stable Diffusion or VLM, while our work focuses on
utilizing LLM to generate SVG given a text prompt.

4.1 Attempts for Converting Raster Images to SVG Images that
Did Not Work

We tried many clustering methods, to cluster each point that is part of a specific
piece in the image, the clusters are converted into SVG paths. For each of these
clusters, we compute the Bezier curve. We first attempted using the Spectral
Clustering [5] algorithm, and then DBSCAN [6]. The results were not very good
visuality and the number of tokens was very high. When we tried to compress
those images, it removed the main features from the image as described below.

eps=4.00 eps=4.67 eps=5.11 eps=6.00




number of GPT- | number of number of GPT-4 number of GPT-4
4 tokens: 19280 | GPT-4 tokens: | tokens: 1936 tokens: 1936
16178

Figure 2. Our attempts to convert raster image to SVG using DBSCAN
Algorithm, and the resulting token number in the final SVG image.

5 Our Method

We created two pipelines for creating the new large dataset. The first one, a small
dataset of text description, image and their corresponding SVG - which classified
to positive and negative according to token count. The second, is a scaling up
dataset from the small one, a large dataset that consists of the triplets, who will be
fine tuned on LLM.

5.1 Creating New Small Dataset

We found that there is a style of images that are “SVG friendly” - non realistic,
black and white, with straight lines in the edges. To create these “SVG friendly”
images, we introduce a pipeline that generates images using a generative model
and then converts them into high-quality SVGs, by Potrace algorithm.

Our pipeline uses OpenAl’s DALL-E API for creating these raster images. We
created a prompt template for DALL-E that describes a specific kind of image and
injects into the template the object we would like to be generated from the prompt.
Example of a template: “A black silhouette of a {object} with well-defined main
features that clearly outline the subject's overall shape. The silhouette shows high
contrast between the sharp main contours and the bright white background. The
silhouette is very simple and lacks sharp edges and intricate details."



As you can see, the prompt describes a detailed black and white image that
emphasizes the main features that outline the shape and are simple without sharp
edges. As a result, the DALL-E model generates images that are naturally easier to
convert to SVG.

When we finish generating the appropriate raster images, we convert them to SVG
via Potrace [7]. In our pipeline, we convert the jpg image to a bitmap which is the
input for the Potrace algorithm.

The final step is to classify the SVG images according to their token count. An
image is classified as positive if it has less than 8k tokens, otherwise it’s negative.
With the combination of the DALL-E API and Potrace we built a small high-
quality SVG dataset consisting of tuples of 2500 raster images with their
corresponding image descriptions (text) and SVG.

AY openAl
}——send request for generating image—el  AP| - |—response—e :’““‘ save to.
7 dall-e-3 SPYIee
£G N
Positve
Vz N
A—— #tokens 5ves-» IS
N <=8 dataset
N 4
read jpg rmalge from path <

Text Generator Process f———save x_ﬂ

7 N
| uses openAl API - GPT-4-turbo |
N\ /

Figure 3. Small dataset creation process
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Number of tokens: 2356 | Number of tokens: 2363 | Number of tokens:4514

Figure 4. illustrations of a ladder, a fish and a pineapple (left to right) in SVG
format from our small dataset.

5.2 Scaling Up to Large Dataset

We used the small dataset as a basis for creating the larger dataset. In this part we
created other pipelines for the larger dataset creation that involved fine tune Stable
Diffusion, and prompt engineering with Flux. This dataset will serve as the dataset
of fine tune LLM.

5.3 Fine Tune Stable Diffusion

We fine tune Stable Diffusion v1.5 [8] with the method of LoRa on the small
dataset, for efficient fine tuning. After that, for inference we performed Grid
Search [9], for searching the best result of images by: trying different wording
prompts, number of inference step range (the larger the number, the image is more
detailed and complex, but takes more time), seeds (the initial starting point of the
image generation) and scale range (how much the model instructed by the prompt
or has creative freedom). We chose the best combination results according to the
SVG output.

At the end, we converted the images output of the stable diffusion to SVG with
Potrace. At first, the results weren’t good because the stable diffusion tends to
generate dark background images, although the prompt indicates a white
background. This resulted in a larger SVG output in terms of tokens count. We
converted the dark background to white with the CV2 python library.

11



Prompt Before Fine Tune | Generated Image | Converted
(After Fine Tune) | Background

A black
silhouette of
a pig with
white
background

A black
silhouette of
man and
woman
holding
hands with
white

background

Figure 5. Example of prompts and generated images before and after fine tuning
and converted the background to white (from left to right).

5.3.1 Scaling Up to 10K samples

The fine tune process is a loop of: generating (in inference time) images of the
friendly SVG style (after fine tuning on the small dataset) and then feed it to the
model for continuing fine tune, the wrapper of prompts be: a black-and-white
silhouette of {processed line} on a solid white background.

For the inference and the continue fine tune, we used two datasets of image
description and their corresponding image, COCO dataset and 2M text to image
dataset, and we used only the textual description of those datasets for diverse
results. The descriptions were too complex for the model (were long with complex
adjectives). To avoid it, we used GPT 40 mini for simplification with prompt
engineering method - we described some examples of prompts to the model and it
learns to generate simplified prompts like the examples.
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"""l have a caption and | want to make it slightly simpler (w.r.t
background and colors) and specific, and turn it a caption that
describes the same thing If the caption is not appropriate to be
converted, respond with “NO”. For example:

1. "pink photo of Tokyo" = "buildings in Tokyo"
2. "Nickelodeon Paw Patrol'Calling All Pups' Soft Potty
Seatll 9 IINOII

do this for the following caption: "{context}".
Format your response as

<simplified>

Figure 6. Prompt engineering method for simplification

Inference - Generating
Images

Prompt
Using COCO and text to |ENgineering
image Datasets

Fine Tune Scaling Up »

Small Dataset Stable Diffusion

«—Continue fine tune___

Figure 7. Scaling up process

In the inference time, we filtered the images with tokens count of the converted
SVG and CLIP similarity score threshold. When an image got a CLIP score that
above from the threshold, and less than 4K tokens count, the image accepted.

The results weren’t high quality enough. Most of them were good, part of the
images wasn’t detailed enough and related to the prompt, part of them were absurd
with anomalies. We assumed that the model isn’t strong enough to produce
detailed images when the prompt requires a silhouette style.
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Simplified Prompt (without wrapper) | Generated Image

a girl sitting with presents and a dog
on the floor

a baby on a bed with a laptop

a batter swinging a bat

A girl playing volleyball in a gym

Figure 8. Examples of generated images at different quality levels (from highest
quality at the top to lowest at the bottom)
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Distribution of Token Lengths in Generated SVGs (GPT-4 Tokens)
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Figure 9. Distribution of token lengths (subset of 1000 images)

5.4 FLUX - Scaling Up to ~1.5M samples

FLUX [10] is a generative model who is stronger and more sophisticated model
from stable diffusion and created by Black Forest Lab. From their official blog:
“All public FLUX.1 models are based on a hybrid architecture of multimodal and
parallel diffusion transformer blocks and scaled to 12B parameters. We improve
over previous state-of-the-art diffusion models™.

As mentioned above, FLUX produced better results than diffusion models such as
Stable Diffusion, so we aimed to use FLUX with prompt engineering to generate
more detailed and higher quality images. We tried different prompts for generating
images and chose the accurate one. Prompt example: minimal {object} with clean
outlines, flat fills, high contrast, scalable vector-style graphic. There is also a
negative prompt, which instructs the model not to generate images related to the
following concepts: photorealistic, noise, texture, watercolor, gradients, film grain,
and shading. We used the FLUX.1-schnell model for inferencing, COCO and 2M
text to image datasets (that mentioned before) for prompts. At the end we
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successfully generated approximately 1.5M images with FLUX, and new dataset
of triplets of text, images and SVG.

Simplified Prompt Generated Image
a boy wearing
headphones looking at a
computer

a woman marking a cake
with a knife

Figure 10. Examples of generated images from FLUX model

6 Fine Tune Llama

Llama 3 [11] is a family generative text models released by Meta. On this project
we fine tune Llama 3 8B instruct with LoRa (for a more efficient process), 8B
indicates the size of the parameters. The model input is a text and the output is
generated text or code only.

The task for the fine tuning was next token prediction - the model predicts the next
token in the SVG output. The text input wrapped with special tokens that indicate
the start and the end of the input: <|ctx|> and <|objs[>, and the output SVG
wrapped with special token that indicates the end of the SVG: <|end svg/>

It’s a self-supervised learning technique, where the model generates implicit labels
for unstructured data instead of relying on a labeled dataset. In this setup, the
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model learns to predict the next token in the SVG sequence given the previous
ones.

We tried fine tune Llama on the FLUX dataset - which yielded good results but
most of them consist of more than 8K tokens in the converted SVG. The context
window of Llama is 8K tokens. As a result, during the fine-tune process, many
tokens of the SVG were cut, which led to the use of an inappropriate SVG, and the
fine tune on our dataset failed. To overcome it, we used the OmniSVG dataset.

6.1 Fine Tune Llama on OmniSVG Dataset

OmniSVG dataset divided into illustration and icon, and we used the icon dataset -
for simpler samples, and we fine tune Llama model.

Each training sample is a pair of (description, SVG) wrapped with prefix and
suffix prompt, for example:

Instruction:

Create a valid minimal SVG for: a red
appleicon

Response:

<svg...>...</svg>

In addition, we used different Hugging Face’s libraries and filtered by the size of
the SVG (tokens count). We used a technique called gradient accumulation [12]
for our core gradient process. Gradient accumulation is a memory optimization
technique that simulates a larger effective batch size by accumulating the gradients
calculated from several sequential smaller mini batches before performing a single
weight update. This technique was necessary because the model is a heavy one,
allowing us to manage GPU memory constraints and achieve the desired large
batch size for better convergence.
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Training Loss vs Epoch
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Figure 12. Loss function relative to ephocs during training

After finishing the fine tune process, we inference on the model.

Text

Before Fine Tune

After Fine Tune

A gray folder features a
white padlock icon
symbolizing security or
privacy

A gray clock icon shows
time with minimalist
hands pointing at 10:10

\

10:10

Figure 13. Inference results on the fine tuned LLM - text description and the
generated SVG, compared before fine tune.
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7 Experiments
To evaluate our model's performance, we performed quantitative analyses.

CLIP similarity score is a text-to-image similarity metric that calculates the
cosine similarity between the visual embedding of a generated image and the
textual embedding of a caption. Using the CLIP model, which was pretrained on a
vast dataset of image-text pairs, this score effectively measures how well an image
aligns with a given text by positioning both representations in a shared embedding
space.

We converted the SVG outputs to image and then checked the similarity score
between the prompt and the converted image.

| CLIP Similarity Score 0.3

Aesthetic Score represents a numerical value that captures the visual appeal of an
image, often calculated using CLIP-based or other perceptual metrics. We used an
Aesthetic Predictor Network, which was trained on human rating. It essentially
learned what combinations of visual features humans find aesthetically pleasing.
The final number is the predicted aesthetic score based on what humans would
rate it.

We converted the SVG outputs to image and then checked the Aesthetic score.

| Aesthetic Score | 4.57

The quantitative evaluation of the generated SVGs performed using two metrics:
the CLIP similarity score and the Aesthetic score. Each measures a different aspect
of performance - semantic alignment with the textual input and visual quality of
the generated output, respectively.

The achieved CLIP similarity score of 0.3 suggests that the relationship between
the textual descriptions and the generated SVGs is limited. While the model able
to capture general object categories (like “triangle”, “circle”, “arrow”), it often
failed to reproduce the specific semantic details of the prompt, such as color

attributes, or contextual relationships between objects.

The low score can be explained by many reasons: first, the generated SVG were
most of them simple, and the CLIP model trained on raster images with complex
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texture and color. Therefore, CLIP may underestimate minimalist SVG images
even when they are structurally correct.

Second, the model fine tuned in a self supervised technique without visual
feedback, relying on token prediction. As a result, the model learns the syntactic
structure of SVG sequences but lacks the ability to assess the visual correctness of
the rendered output.

The Aesthetic score of 4.57 shows that even though the generated SVGs didn’t
always match the text meaning correct, they still looked good visually. This score
comes from a model that predicts how appealing an image looks to people, based
on things like composition, balance, and overall visual order. A value above 4 on a
1-10 scale means the images were clear, and nicely structured.

8 Conclusion

The primary objective of this study was to investigate the feasibility of generating
SVG directly from text prompts using an LLM. To achieve it, we first wanted to
create a new dataset consisting of text, image and their corresponding SVG. The
raster images were generated in a specific style suitable for conversion to vector
format, ensuring consistency and clarity in the resulting SVG files. Various
methods were explored to build this dataset, including fine-tuning Stable Diffusion
model and utilizing the FLUX generative model to generate images aligned with
the textual prompts. At the end, we generated ~1.5M triplets with FLUX.

During our experiments with fine-tuning, we found that training the LLM directly
on our dataset didn’t work well. This was mostly because the model’s limited
context window. Then we decided to switch using the OmniSVG dataset for fine-
tuning.

The quantitative results, with an average CLIP score of 0.3 and an Aesthetic score
of 4.57, indicate that the model generated visually coherent SVGs but with limited
semantic alignment to the input text.

Overall, this study shows that generating SVGs directly from text using an LLM is
possible, but there are still some limitations that can be improved in future work.
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9 Future Work

To improve fine-tuning results on the LLM, we plan to experiment with chunking
the SVG outputs. Instead of generating the entire SVG in one long sequence, the
model will produce it in smaller, structured parts, for example, by splitting it into
separate “scenes” that can later be combined into a complete SVG. This iterative
approach could help the model better handle long sequences and capture more
detailed relationships between text and vector structure.

In addition, we aim to build on the ideas presented in the OmniSVG paper. One of
the main limitations of their approach is that, during inference, the model needs to
generate tens of thousands of tokens for complex samples, which makes the
generation process slow. The authors suggest that using multi-token prediction and
key-value cache compression could help reduce the generation cost and improve
efficiency. In our future work, we plan to explore these directions and test whether
such techniques can also enhance text-to-SVG generation performance.
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