
1

The Academic College of Tel Aviv-Yaffo

The Faculty of the School of Computer Science

Enhancing Large Language Models (LLMs) for Complex

SVG Generation from Textual Descriptions

November 2025

Thesis submitted in partial fulfilment of the requirements for the M.Sc. degree in the School of Computer

Science of the Academic College of Tel Aviv-Yaffo

By

Maayan Mashhadi

The research work for the thesis has been carried out under the supervision of

Dr. Sarel Cohen

2

Contents
1 Abstract .. 3

Acknowledgments .. 4

2 Introduction .. 5

3 Tools and Techniques ... 6

4 Related Work .. 7

4.1 Attempts for Converting Raster Images to SVG Images that Did Not Work 8

5 Our Method .. 9

5.1 Creating New Small Dataset .. 9

5.2 Scaling Up to Large Dataset .. 11

5.3 Fine Tune Stable Diffusion .. 11

5.3.1 Scaling Up to 10K samples ... 12

5.4 FLUX - Scaling Up to ~1.5M samples .. 15

6 Fine Tune Llama.. 16

6.1 Fine Tune Llama on OmniSVG Dataset .. 17

7 Experiments .. 19

8 Conclusion ... 20

9 Future Work .. 21

References .. 22

3

1 Abstract

Existing large language models (LLMs) like GPT and Claude can generate basic

SVGs (Scalable Vector Graphics) based on textual descriptions. However, these

SVGs tend to be simplistic and abstract. This project aims to enhance the ability of

LLM to generate more complex, high-quality SVGs that offer realistic depictions

of everyday objects, based just on textual descriptions.

To achieve this, we developed a pipeline for generating SVGs from text. We

constructed a large, high-quality dataset consisting of triplets of textual

descriptions, raster images, and their corresponding SVG files. This dataset was

used to fine tune an LLM for the text to SVG generation task. The pipeline

involves several generative models and algorithms, such as DALL-E, Stable

Diffusion, and Flux, for image generation, and Potrace for converting raster

images into SVG format. We also experimented with prompt engineering and fine-

tuning methods to improve output quality.

For fine tuning the LLM, we used Cross-Entropy Loss for the next-token

prediction task, where the model predicts the next token in the SVG sequence. The

training process included gradient accumulation to handle larger batches. Fine

tuning on our dataset was unsuccessful due to the LLM’s small context window.

However, we successfully fine tuned with the OmniSVG dataset on icons (which

was released during our work). In the results of CLIP similarity score the model

accepts 0.3 - which means the model can capture some broad aspects, but often

miss specific details from the prompt, and for Aesthetic 4.57- which indicates the

generated SVG are pleasing visuality, they are not broken, but not detailed

enough.

We published poster about our new dataset in the The 18th ACM International

System and Storage Conference (SYSTOR '25 Posters) [13]

4

Acknowledgments

I would like to thank the people who contributed to this research and generously

shared their knowledge.

First, I would like to thank Dr. Sarel Cohen, my supervisor, for driving the project

forward, kindly answering every question (even on weekends), and connecting me

with other colleagues.

I would also like to thank Ohad Rubin, a PhD student at Tel Aviv University, who

served as a co-supervisor. Thank you for sharing your expertise, meeting with us

in your free time, and patiently answering our questions.

My thanks also go to Rania Briq, a PhD student, for sharing her knowledge in

computer vision and for meeting with us in her free time.

Finally, I would like to thank Prof. Ohad Fried for sharing his knowledge in

computer vision.

5

2 Introduction

SVG is an XML based image format used to describe vector graphics. Unlike

raster images, which are composed of pixels, SVGs represent images through

mathematical paths, shapes, and colors, allowing them to scale infinitely without

losing quality. SVGs play a crucial role in modern image rendering, offering

scalable resolution, flexible usability, and easy editing. Their use is especially

widespread in web development and graphic design.

In recent years, the rapid advancement of LLMs improved their ability to generate

structured outputs from textual descriptions. However, while models such as GPT

and Claude have achieved impressive results in text to image generation,

generating vector-based graphics directly from text remains a largely unexplored

area. Unlike raster images, SVGs require a precise structural representation that

captures both visual appearance and geometric relationships.

The importance of this work lies in improving the connection between textual

input and high-quality SVG outputs using LLM, which could significantly expand

the potential applications of these models in creative and technical domains.

In this thesis, we introduce a pipeline for generating SVG outputs from textual

descriptions. Our approach involves two main components:

1. Constructs a high-quality dataset of text-image-SVG triplets, enabling the

fine-tuning of an LLM for this task.

2. Leverages the fine-tuned model to produce SVGs from textual input.

As you can see in Figure 1, the current state of the art in text-to-SVG in both

ChatGPT and Claude is not good, resulting in very abstract, even absurd

looking SVG images. This gives motivation to our work, as there seems to be a

large gap for improvement.

Prompt ChatGPT Claude

please create an SVG

of a dog

6

Please create an SVG

of a man holding a

sword, he is also

wearing a cowboy hat

Figure 1. Comparing results of ChatGPT and Claude for asking SVG of a

specific object.

3 Tools and Techniques

During our project, we used some tools and techniques for creating the new

dataset and fine tuning

DALL-E - is a generative AI model developed by OpenAI that can create

images directly from textual descriptions. It combines methods from both

natural language processing and computer vision to produce visual content

based on user prompts. Built on a transformer architecture, DALL-E first

encodes the text input into a latent representation that captures the semantic

and stylistic meaning of the prompt. This latent representation is then decoded

by the model into a pixel-based image through a series of neural network

layers.

Potrace - is an algorithm for transforming a bitmap into a smooth, scalable

image. The input for this algorithm is a bitmap and the output is a vector image

format (like SVG).

Stable Diffusion – is a text to image model that produce image from textual

description. It does it by three steps:

1. Text Representation Generation - converts a text prompt into a text vector

representation.

2. Image Representation Refining - it starts with random noise, refines the

image representation little by little, with the guidance of the text

representation.

3. Image Upscaling - it upscales the image representation into a high-

resolution image.

7

LoRA - is a technique used to adapt machine learning models to new contexts

in an efficient way. It does it by adding lightweight pieces to the original

model, rather than changing the entire model. LoRA freezes the original

weights and parameters of the model as they are. Then, on top of this original

model, it adds a lightweight addition called a low-rank matrix, which is then

applied to new inputs to get results specific to the context.

FLUX - is a generative AI model that transforms descriptive text prompts into

high-quality, detailed images. It achieves state-of-the-art performance in image

quality and prompt adherence. The model is based on rectified flow

transformers, a modern technique that is generally more efficient than

traditional diffusion models.

Llama 3 – is a family of open source LLM’s. They are released in different

sizes. Llama 3 was pre trained on a larger dataset of over 15 trillion tokens of

publicly available, high-quality text and code.

4 Related Work

There are many different methods that explore the creation of SVG from textual

descriptions.

VectorFusion [1] introduced a method for generating abstract vector graphics

(SVG format) from text captions. It utilizes pre-trained Stable Diffusion, for

sampling raster image from text input, this is an image that captures the semantic

content of the text input, and then vectorizing this image. There is a two stage

pipeline: sampling an image from Stable Diffusion, then vectorizing it

automatically. Given text, we sample a raster image from Stable Diffusion. Then,

it automatically traces the raster sample to convert it to an SVG using the off-the-

shelf Layer-wise Image Vectorization program (LIVE) - which produces clean

SVGs. It utilizes score distillation sampling (SDS) loss, which encourages the

generated vector graphics to match the conditional distribution learned by the pre-

trained Stable Diffusion text-to-image diffusion model.

SVGDreamer [2] presents an optimization-based approach for generating diverse

vector graphics from text prompts. The method's process is divided into two

stages: semantic-guided vectorization of images and SVG generation using VPSD

optimization.

8

DiffSketcher [3] presents a method for generating vectorized sketches from text

prompts. Built on a pre-trained text-to-image diffusion model, DiffSketcher

optimizes a set of Bezier curves using an enhanced version of SDS loss. The

approach works as follows: given a text prompt y that describes the target subject

and a set of control points for strokes, it generates a sketch S that captures the

text's semantic features. To initialize stroke control points, DiffSketcher extracts

and merges attention maps from the U-Net within the latent diffusion model.

During our work, the paper OmniSVG [4] was released. They propose a unified

framework built on pre-trained vision-language models (VLMs) to perform

multimodal SVG generation (text to SVG, image to SVG, character-reference

SVG). They discretize SVG commands and coordinates into tokens, thereby

decoupling the structural logic of the vector graphics (e.g., commands, hierarchy)

from low-level geometry (exact coordinate values).

Our work differs from the above works as the above results focus on utilizing and

optimizing pre-trained Stable Diffusion or VLM, while our work focuses on

utilizing LLM to generate SVG given a text prompt.

4.1 Attempts for Converting Raster Images to SVG Images that

Did Not Work

We tried many clustering methods, to cluster each point that is part of a specific

piece in the image, the clusters are converted into SVG paths. For each of these

clusters, we compute the Bezier curve. We first attempted using the Spectral

Clustering [5] algorithm, and then DBSCAN [6]. The results were not very good

visuality and the number of tokens was very high. When we tried to compress

those images, it removed the main features from the image as described below.

eps=4.00 eps= 4.67 eps= 5.11 eps=6.00

9

number of GPT-

4 tokens: 19280

number of

GPT-4 tokens:

16178

number of GPT-4

tokens: 1936

number of GPT-4

tokens: 1936

Figure 2. Our attempts to convert raster image to SVG using DBSCAN

Algorithm, and the resulting token number in the final SVG image.

5 Our Method

We created two pipelines for creating the new large dataset. The first one, a small

dataset of text description, image and their corresponding SVG - which classified

to positive and negative according to token count. The second, is a scaling up

dataset from the small one, a large dataset that consists of the triplets, who will be

fine tuned on LLM.

5.1 Creating New Small Dataset

We found that there is a style of images that are “SVG friendly” - non realistic,

black and white, with straight lines in the edges. To create these “SVG friendly”

images, we introduce a pipeline that generates images using a generative model

and then converts them into high-quality SVGs, by Potrace algorithm.

Our pipeline uses OpenAI’s DALL-E API for creating these raster images. We

created a prompt template for DALL-E that describes a specific kind of image and

injects into the template the object we would like to be generated from the prompt.

Example of a template: “A black silhouette of a {object} with well-defined main

features that clearly outline the subject's overall shape. The silhouette shows high

contrast between the sharp main contours and the bright white background. The

silhouette is very simple and lacks sharp edges and intricate details."

10

As you can see, the prompt describes a detailed black and white image that

emphasizes the main features that outline the shape and are simple without sharp

edges. As a result, the DALL-E model generates images that are naturally easier to

convert to SVG.

When we finish generating the appropriate raster images, we convert them to SVG

via Potrace [7]. In our pipeline, we convert the jpg image to a bitmap which is the

input for the Potrace algorithm.

The final step is to classify the SVG images according to their token count. An

image is classified as positive if it has less than 8k tokens, otherwise it’s negative.

With the combination of the DALL-E API and Potrace we built a small high-

quality SVG dataset consisting of tuples of 2500 raster images with their

corresponding image descriptions (text) and SVG.

Figure 3. Small dataset creation process

11

Number of tokens: 2356 Number of tokens: 2363 Number of tokens:4514

Figure 4. illustrations of a ladder, a fish and a pineapple (left to right) in SVG

format from our small dataset.

5.2 Scaling Up to Large Dataset

We used the small dataset as a basis for creating the larger dataset. In this part we

created other pipelines for the larger dataset creation that involved fine tune Stable

Diffusion, and prompt engineering with Flux. This dataset will serve as the dataset

of fine tune LLM.

5.3 Fine Tune Stable Diffusion

We fine tune Stable Diffusion v1.5 [8] with the method of LoRa on the small

dataset, for efficient fine tuning. After that, for inference we performed Grid

Search [9], for searching the best result of images by: trying different wording

prompts, number of inference step range (the larger the number, the image is more

detailed and complex, but takes more time), seeds (the initial starting point of the

image generation) and scale range (how much the model instructed by the prompt

or has creative freedom). We chose the best combination results according to the

SVG output.

At the end, we converted the images output of the stable diffusion to SVG with

Potrace. At first, the results weren’t good because the stable diffusion tends to

generate dark background images, although the prompt indicates a white

background. This resulted in a larger SVG output in terms of tokens count. We

converted the dark background to white with the CV2 python library.

12

Prompt Before Fine Tune Generated Image

(After Fine Tune)

Converted

Background

A black

silhouette of

a pig with

white

background

A black

silhouette of

man and

woman

holding

hands with

white

background

Figure 5. Example of prompts and generated images before and after fine tuning

and converted the background to white (from left to right).

5.3.1 Scaling Up to 10K samples

The fine tune process is a loop of: generating (in inference time) images of the

friendly SVG style (after fine tuning on the small dataset) and then feed it to the

model for continuing fine tune, the wrapper of prompts be: a black-and-white

silhouette of {processed_line} on a solid white background.

For the inference and the continue fine tune, we used two datasets of image

description and their corresponding image, COCO dataset and 2M text to image

dataset, and we used only the textual description of those datasets for diverse

results. The descriptions were too complex for the model (were long with complex

adjectives). To avoid it, we used GPT 4o mini for simplification with prompt

engineering method - we described some examples of prompts to the model and it

learns to generate simplified prompts like the examples.

13

Figure 6. Prompt engineering method for simplification

Figure 7. Scaling up process

In the inference time, we filtered the images with tokens count of the converted

SVG and CLIP similarity score threshold. When an image got a CLIP score that

above from the threshold, and less than 4K tokens count, the image accepted.

The results weren’t high quality enough. Most of them were good, part of the

images wasn’t detailed enough and related to the prompt, part of them were absurd

with anomalies. We assumed that the model isn’t strong enough to produce

detailed images when the prompt requires a silhouette style.

"""I have a caption and I want to make it slightly simpler (w.r.t
background and colors) and specific, and turn it a caption that
describes the same thing If the caption is not appropriate to be
converted, respond with “NO”. For example:

1. "pink photo of Tokyo" → "buildings in Tokyo"
2. "Nickelodeon Paw Patrol'Calling All Pups' Soft Potty

Seat" → "NO"

do this for the following caption: "{context}".

Format your response as

<simplified>

14

Simplified Prompt (without wrapper) Generated Image

a girl sitting with presents and a dog

on the floor

a baby on a bed with a laptop

a batter swinging a bat

A girl playing volleyball in a gym

Figure 8. Examples of generated images at different quality levels (from highest

quality at the top to lowest at the bottom)

15

Figure 9. Distribution of token lengths (subset of 1000 images)

5.4 FLUX - Scaling Up to ~1.5M samples

FLUX [10] is a generative model who is stronger and more sophisticated model

from stable diffusion and created by Black Forest Lab. From their official blog:

“All public FLUX.1 models are based on a hybrid architecture of multimodal and

parallel diffusion transformer blocks and scaled to 12B parameters. We improve

over previous state-of-the-art diffusion models”.

As mentioned above, FLUX produced better results than diffusion models such as

Stable Diffusion, so we aimed to use FLUX with prompt engineering to generate

more detailed and higher quality images. We tried different prompts for generating

images and chose the accurate one. Prompt example: minimal {object} with clean

outlines, flat fills, high contrast, scalable vector-style graphic. There is also a

negative prompt, which instructs the model not to generate images related to the

following concepts: photorealistic, noise, texture, watercolor, gradients, film grain,

and shading. We used the FLUX.1-schnell model for inferencing, COCO and 2M

text to image datasets (that mentioned before) for prompts. At the end we

16

successfully generated approximately 1.5M images with FLUX, and new dataset

of triplets of text, images and SVG.

Simplified Prompt Generated Image

a boy wearing

headphones looking at a

computer

a woman marking a cake

with a knife

Figure 10. Examples of generated images from FLUX model

6 Fine Tune Llama

Llama 3 [11] is a family generative text models released by Meta. On this project

we fine tune Llama 3 8B instruct with LoRa (for a more efficient process), 8B

indicates the size of the parameters. The model input is a text and the output is

generated text or code only.

The task for the fine tuning was next token prediction - the model predicts the next

token in the SVG output. The text input wrapped with special tokens that indicate

the start and the end of the input: <|ctx|> and <|objs|> , and the output SVG

wrapped with special token that indicates the end of the SVG: <|end_svg|>

It’s a self-supervised learning technique, where the model generates implicit labels

for unstructured data instead of relying on a labeled dataset. In this setup, the

17

model learns to predict the next token in the SVG sequence given the previous

ones.

We tried fine tune Llama on the FLUX dataset - which yielded good results but

most of them consist of more than 8K tokens in the converted SVG. The context

window of Llama is 8K tokens. As a result, during the fine-tune process, many

tokens of the SVG were cut, which led to the use of an inappropriate SVG, and the

fine tune on our dataset failed. To overcome it, we used the OmniSVG dataset.

6.1 Fine Tune Llama on OmniSVG Dataset

OmniSVG dataset divided into illustration and icon, and we used the icon dataset -

for simpler samples, and we fine tune Llama model.

Each training sample is a pair of (description, SVG) wrapped with prefix and

suffix prompt, for example:

It’s a simple instruction-response pair.

In addition, we used different Hugging Face’s libraries and filtered by the size of

the SVG (tokens count). We used a technique called gradient accumulation [12]

for our core gradient process. Gradient accumulation is a memory optimization

technique that simulates a larger effective batch size by accumulating the gradients

calculated from several sequential smaller mini batches before performing a single

weight update. This technique was necessary because the model is a heavy one,

allowing us to manage GPU memory constraints and achieve the desired large

batch size for better convergence.

Instruction:

Create a valid minimal SVG for: a red
apple icon

Response:

<svg ...> ... </svg>

18

Figure 12. Loss function relative to ephocs during training

After finishing the fine tune process, we inference on the model.

Text Before Fine Tune After Fine Tune

A gray folder features a

white padlock icon

symbolizing security or

privacy

A gray clock icon shows

time with minimalist

hands pointing at 10:10

Figure 13. Inference results on the fine tuned LLM - text description and the

generated SVG, compared before fine tune.

19

7 Experiments

To evaluate our model's performance, we performed quantitative analyses.

CLIP similarity score is a text-to-image similarity metric that calculates the

cosine similarity between the visual embedding of a generated image and the

textual embedding of a caption. Using the CLIP model, which was pretrained on a

vast dataset of image-text pairs, this score effectively measures how well an image

aligns with a given text by positioning both representations in a shared embedding

space.

We converted the SVG outputs to image and then checked the similarity score

between the prompt and the converted image.

CLIP Similarity Score 0.3

Aesthetic Score represents a numerical value that captures the visual appeal of an

image, often calculated using CLIP-based or other perceptual metrics. We used an

Aesthetic Predictor Network, which was trained on human rating. It essentially

learned what combinations of visual features humans find aesthetically pleasing.

The final number is the predicted aesthetic score based on what humans would

rate it.

We converted the SVG outputs to image and then checked the Aesthetic score.

Aesthetic Score 4.57

The quantitative evaluation of the generated SVGs performed using two metrics:

the CLIP similarity score and the Aesthetic score. Each measures a different aspect

of performance - semantic alignment with the textual input and visual quality of

the generated output, respectively.

The achieved CLIP similarity score of 0.3 suggests that the relationship between

the textual descriptions and the generated SVGs is limited. While the model able

to capture general object categories (like “triangle”, “circle”, “arrow”), it often

failed to reproduce the specific semantic details of the prompt, such as color

attributes, or contextual relationships between objects.

The low score can be explained by many reasons: first, the generated SVG were

most of them simple, and the CLIP model trained on raster images with complex

20

texture and color. Therefore, CLIP may underestimate minimalist SVG images

even when they are structurally correct.

Second, the model fine tuned in a self supervised technique without visual

feedback, relying on token prediction. As a result, the model learns the syntactic

structure of SVG sequences but lacks the ability to assess the visual correctness of

the rendered output.

The Aesthetic score of 4.57 shows that even though the generated SVGs didn’t

always match the text meaning correct, they still looked good visually. This score

comes from a model that predicts how appealing an image looks to people, based

on things like composition, balance, and overall visual order. A value above 4 on a

1-10 scale means the images were clear, and nicely structured.

8 Conclusion

The primary objective of this study was to investigate the feasibility of generating

SVG directly from text prompts using an LLM. To achieve it, we first wanted to

create a new dataset consisting of text, image and their corresponding SVG. The

raster images were generated in a specific style suitable for conversion to vector

format, ensuring consistency and clarity in the resulting SVG files. Various

methods were explored to build this dataset, including fine-tuning Stable Diffusion

model and utilizing the FLUX generative model to generate images aligned with

the textual prompts. At the end, we generated ~1.5M triplets with FLUX.

During our experiments with fine-tuning, we found that training the LLM directly

on our dataset didn’t work well. This was mostly because the model’s limited

context window. Then we decided to switch using the OmniSVG dataset for fine-

tuning.

The quantitative results, with an average CLIP score of 0.3 and an Aesthetic score

of 4.57, indicate that the model generated visually coherent SVGs but with limited

semantic alignment to the input text.

Overall, this study shows that generating SVGs directly from text using an LLM is

possible, but there are still some limitations that can be improved in future work.

21

9 Future Work

To improve fine-tuning results on the LLM, we plan to experiment with chunking

the SVG outputs. Instead of generating the entire SVG in one long sequence, the

model will produce it in smaller, structured parts, for example, by splitting it into

separate “scenes” that can later be combined into a complete SVG. This iterative

approach could help the model better handle long sequences and capture more

detailed relationships between text and vector structure.

In addition, we aim to build on the ideas presented in the OmniSVG paper. One of

the main limitations of their approach is that, during inference, the model needs to

generate tens of thousands of tokens for complex samples, which makes the

generation process slow. The authors suggest that using multi-token prediction and

key-value cache compression could help reduce the generation cost and improve

efficiency. In our future work, we plan to explore these directions and test whether

such techniques can also enhance text-to-SVG generation performance.

22

References

Our repository: https://github.com/MaayanMashhadi/Thesis

1. Ayush Jain, Angjoo Xie, and Pieter Abbeel. “VectorFusion: Text-to-SVG

by Abstracting Pixel-Based Diffusion Models”. In: arXiv preprint

arXiv:2306.15613 (2023).

2. Ximing Xing et al. “SVGDreamer: Text guided SVG generation with dif-

fusion model”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2024, pp. 4546–4555

3. Ximing Xing et al. “Diffsketcher: Text guided vector sketch synthesis

through latent diffusion models”. In: Advances in Neural Information Pro-

cessing Systems 36 (2023), pp. 15869–15889.

4. Yang, Y., Cheng, W., Chen, S., Zeng, X., Zhang, J., Wang, L., … Jiang, Y.-

G. (2025). OmniSVG: A Unified Scalable Vector Graphics Generation

Model. arXiv Preprint Arxiv:2504. 06263.

5. Francis Bach and Michael Jordan. “Learning Spectral Clustering”. In:

Advances in Neural Information Processing Systems (NeurIPS). Ed. by S.

Thrun, L. Saul, and B. Sch¨olkopf. Vol. 16. MIT Press, 2003. url:

https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b

3eb688a11f95b0ae60-Paper.pdf

6. Martin Ester et al. “A density-based algorithm for discovering clusters in

large spatial databases with noise”. In: Proceedings of the Second Inter-

national Conference on Knowledge Discovery and Data Mining. KDD’96.

Portland, Oregon: AAAI Press, 1996.

url: https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-

96.final.frame.pd

7. Peter Selinger. “Potrace : a polygon-based tracing algorithm”. In: 2003.

url: https://api.semanticscholar.org/CorpusID:1419652
8. Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas

Müller,

Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel,

Dustin Podell,

Tim Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek,

and Robin

Rombach. 2024. Scaling Rectified Flow Transformers for High-Resolution

Image

Synthesis. arXiv:2403.03206 [cs.CV] https://arxiv.org/abs/2403.03206

https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf
https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf
https://api.semanticscholar.org/CorpusID:1419652
https://arxiv.org/abs/2403.03206

23

9. Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid Search, Random

Search, Genetic Algorithm: A Big Comparison for

NAS. CoRR, abs/1912.06059. Retrieved from

http://arxiv.org/abs/1912.06059

10. Labs, B. F., Batifol, S., Blattmann, A., Boesel, F., Consul, S., Diagne, C., …

Smith, L. (2025). FLUX.1 Kontext: Flow Matching for In-Context Image

Generation and Editing in Latent Space. arXiv [Cs.GR]. Retrieved from

http://arxiv.org/abs/2506.15742

11. Meta AI. (2024). LLaMA 3.2. Retrieved October 27, 2024,

from https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-

mobile-devices/

12. [Scaling Deep Contrastive Learning Batch Size under Memory Limited

Setup](https://aclanthology.org/2021.repl4nlp-1.31/) (Gao et al., RepL4NLP

2021)

13. Our poster: https://systor25posters.hotcrp.com/doc/systor25posters-

paper10-poster_pdf.pdf?cap=hcav10QrKeTGfpnnYjBtcmQHXiSDyB

http://arxiv.org/abs/1912.06059
http://arxiv.org/abs/2506.15742
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://systor25posters.hotcrp.com/doc/systor25posters-paper10-poster_pdf.pdf?cap=hcav10QrKeTGfpnnYjBtcmQHXiSDyB
https://systor25posters.hotcrp.com/doc/systor25posters-paper10-poster_pdf.pdf?cap=hcav10QrKeTGfpnnYjBtcmQHXiSDyB

