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1 Abstract 

Existing large language models (LLMs) like GPT and Claude can generate basic 

SVGs (Scalable Vector Graphics) based on textual descriptions. However, these 

SVGs tend to be simplistic and abstract. This project aims to enhance the ability of 

LLM to generate more complex, high-quality SVGs that offer realistic depictions 

of everyday objects, based just on textual descriptions. 

To achieve this, we developed a pipeline for generating SVGs from text. We 

constructed a large, high-quality dataset consisting of triplets of textual 

descriptions, raster images, and their corresponding SVG files. This dataset was 

used to fine tune an LLM for the text to SVG generation task. The pipeline 

involves several generative models and algorithms, such as DALL-E, Stable 

Diffusion, and Flux, for image generation, and Potrace for converting raster 

images into SVG format. We also experimented with prompt engineering and fine-

tuning methods to improve output quality. 

For fine tuning the LLM, we used Cross-Entropy Loss for the next-token 

prediction task, where the model predicts the next token in the SVG sequence. The 

training process included gradient accumulation to handle larger batches. Fine 

tuning on our dataset was unsuccessful due to the LLM’s small context window. 

However, we successfully fine tuned with the OmniSVG dataset on icons (which 

was released during our work). In the results of CLIP similarity score the model 

accepts 0.3  - which means the model can capture some broad aspects, but often 

miss specific details from the prompt, and for Aesthetic 4.57- which indicates the 

generated SVG are pleasing visuality, they are not broken, but not detailed 

enough. 

We published poster about our new dataset in the The 18th ACM International 

System and Storage Conference (SYSTOR '25 Posters) [13]  
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2 Introduction 

SVG is an XML based image format used to describe vector graphics. Unlike 

raster images, which are composed of pixels, SVGs represent images through 

mathematical paths, shapes, and colors, allowing them to scale infinitely without 

losing quality. SVGs play a crucial role in modern image rendering, offering 

scalable resolution, flexible usability, and easy editing. Their use is especially 

widespread in web development and graphic design.  

In recent years, the rapid advancement of LLMs improved their ability to generate 

structured outputs from textual descriptions. However, while models such as GPT 

and Claude have achieved impressive results in text to image generation, 

generating vector-based graphics directly from text remains a largely unexplored 

area. Unlike raster images, SVGs require a precise structural representation that 

captures both visual appearance and geometric relationships. 

The importance of this work lies in improving the connection between textual 

input and high-quality SVG outputs using LLM, which could significantly expand 

the potential applications of these models in creative and technical domains. 

In this thesis, we introduce a pipeline for generating SVG outputs from textual 

descriptions. Our approach involves two main components: 

1. Constructs a high-quality dataset of text-image-SVG triplets, enabling the 

fine-tuning of an LLM for this task. 

2. Leverages the fine-tuned model to produce SVGs from textual input. 

As you can see in Figure 1, the current state of the art in text-to-SVG in both 

ChatGPT and Claude is not good, resulting in very abstract, even absurd 

looking SVG images. This gives motivation to our work, as there seems to be a 

large gap for improvement. 

Prompt ChatGPT Claude 

please create an SVG 

of a dog 
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Please create an SVG 

of a man holding a 

sword, he is also 

wearing a cowboy hat 

 

 

Figure 1. Comparing results of ChatGPT and Claude for asking SVG of a 

specific object. 

3 Tools and Techniques  

During our project, we used some tools and techniques for creating the new 

dataset and fine tuning 

DALL-E - is a generative AI model developed by OpenAI that can create 

images directly from textual descriptions. It combines methods from both 

natural language processing and computer vision to produce visual content 

based on user prompts. Built on a transformer architecture, DALL-E first 

encodes the text input into a latent representation that captures the semantic 

and stylistic meaning of the prompt. This latent representation is then decoded 

by the model into a pixel-based image through a series of neural network 

layers. 

Potrace - is an algorithm for transforming a bitmap into a smooth, scalable 

image. The input for this algorithm is a bitmap and the output is a vector image 

format (like SVG). 

Stable Diffusion – is a text to image model that produce image from textual 

description. It does it by three steps:  

1. Text Representation Generation - converts a text prompt into a text vector 

representation. 

2. Image Representation Refining - it starts with random noise, refines the 

image representation little by little, with the guidance of the text 

representation.  

3. Image Upscaling - it upscales the image representation into a high-

resolution image. 
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LoRA - is a technique used to adapt machine learning models to new contexts 

in an efficient way. It does it by adding lightweight pieces to the original 

model, rather than changing the entire model. LoRA freezes the original 

weights and parameters of the model as they are. Then, on top of this original 

model, it adds a lightweight addition called a low-rank matrix, which is then 

applied to new inputs to get results specific to the context. 

FLUX - is a generative AI model that transforms descriptive text prompts into 

high-quality, detailed images. It achieves state-of-the-art performance in image 

quality and prompt adherence. The model is based on rectified flow 

transformers, a modern technique that is generally more efficient than 

traditional diffusion models. 

Llama 3 – is a family of open source LLM’s. They are released in different 

sizes. Llama 3 was pre trained on a larger dataset of over 15 trillion tokens of 

publicly available, high-quality text and code.  

 

4 Related Work 

There are many different methods that explore the creation of SVG from textual 

descriptions. 

VectorFusion [1]  introduced a method for generating abstract vector graphics 

(SVG format) from text captions. It utilizes pre-trained Stable Diffusion, for 

sampling raster image from text input, this is an image that captures the semantic 

content of the text input, and then vectorizing this image. There is a two stage 

pipeline: sampling an image from Stable Diffusion, then vectorizing it 

automatically. Given text, we sample a raster image from Stable Diffusion. Then, 

it automatically traces the raster sample to convert it to an SVG using the off-the-

shelf Layer-wise Image Vectorization program (LIVE) - which produces clean 

SVGs. It utilizes score distillation sampling (SDS) loss, which encourages the 

generated vector graphics to match the conditional distribution learned by the pre-

trained Stable Diffusion text-to-image diffusion model. 

SVGDreamer [2] presents an optimization-based approach for generating diverse 

vector graphics from text prompts. The method's process is divided into two 

stages: semantic-guided vectorization of images and SVG generation using VPSD 

optimization. 
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DiffSketcher [3] presents a method for generating vectorized sketches from text 

prompts. Built on a pre-trained text-to-image diffusion model, DiffSketcher 

optimizes a set of Bezier curves using an enhanced version of SDS loss. The 

approach works as follows: given a text prompt y that describes the target subject 

and a set of control points for strokes, it generates a sketch S that captures the 

text's semantic features. To initialize stroke control points, DiffSketcher extracts 

and merges attention maps from the U-Net within the latent diffusion model. 

During our work, the paper OmniSVG [4] was released. They propose a unified 

framework built on pre-trained vision-language models (VLMs) to perform 

multimodal SVG generation (text to SVG, image to SVG, character-reference 

SVG). They discretize SVG commands and coordinates into tokens, thereby 

decoupling the structural logic of the vector graphics (e.g., commands, hierarchy) 

from low-level geometry (exact coordinate values). 

Our work differs from the above works as the above results focus on utilizing and 

optimizing pre-trained Stable Diffusion or VLM, while our work focuses on 

utilizing LLM to generate SVG given a text prompt. 

 

4.1 Attempts for Converting Raster Images to SVG Images that 

Did Not Work 

We tried many clustering methods, to cluster each point that is part of a specific 

piece in the image, the clusters are converted into SVG paths. For each of these 

clusters, we compute the Bezier curve. We first attempted using the Spectral 

Clustering [5] algorithm, and then DBSCAN [6]. The results were not very good 

visuality and the number of tokens was very high. When we tried to compress 

those images, it removed the main features from the image as described below. 

 

eps=4.00 eps= 4.67  eps= 5.11 eps=6.00 
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number of GPT-

4 tokens: 19280 

number of 

GPT-4 tokens: 

16178 

number of GPT-4 

tokens: 1936 

number of GPT-4 

tokens: 1936 

  

Figure 2. Our attempts to convert raster image to SVG using DBSCAN 

Algorithm, and the resulting token number in the final SVG image. 

5 Our Method 

We created two pipelines for creating the new large dataset. The first one, a small 

dataset of text description, image and their corresponding SVG - which classified 

to positive and negative according to token count. The second, is a scaling up 

dataset from the small one, a large dataset that consists of the triplets, who will be 

fine tuned on LLM. 

5.1 Creating New Small Dataset 

We found that there is a style of images that are “SVG friendly” -  non realistic, 

black and white, with straight lines in the edges. To create these “SVG friendly” 

images, we introduce a pipeline that generates images using a generative model 

and then converts them into high-quality SVGs, by Potrace algorithm. 

Our pipeline uses OpenAI’s DALL-E API for creating these raster images. We 

created a prompt template for DALL-E that describes a specific kind of image and 

injects into the template the object we would like to be generated from the prompt. 

Example of a template: “A black silhouette of a {object} with well-defined main 

features that clearly outline the subject's overall shape. The silhouette shows high 

contrast between the sharp main contours and the bright white background.  The 

silhouette is very simple and lacks sharp edges and intricate details." 



10 
 

As you can see, the prompt describes a detailed black and white image that 

emphasizes the main features that outline the shape and are simple without sharp 

edges. As a result, the DALL-E model generates images that are naturally easier to 

convert to SVG. 

When we finish generating the appropriate raster images, we convert them to SVG 

via Potrace [7]. In our pipeline, we convert the jpg image to a bitmap which is the 

input for the Potrace algorithm. 

The final step is to classify the SVG images according to their token count. An 

image is classified as positive if it has less than 8k tokens, otherwise it’s negative. 

With the combination of the DALL-E API and Potrace we built a small high-

quality SVG dataset consisting of tuples of 2500 raster images with their 

corresponding image descriptions (text) and SVG. 

 

 

Figure 3. Small dataset creation process 
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Number of tokens: 2356 Number of tokens: 2363 Number of tokens:4514 

Figure 4. illustrations of a ladder, a fish and a pineapple (left to right) in SVG 

format from our small dataset. 

 

5.2 Scaling Up to Large Dataset 

We used the small dataset as a basis for creating the larger dataset. In this part we 

created other pipelines for the larger dataset creation that involved fine tune Stable 

Diffusion, and prompt engineering with Flux. This dataset will serve as the dataset 

of fine tune LLM. 

5.3 Fine Tune Stable Diffusion 

We fine tune Stable Diffusion v1.5 [8] with the method of LoRa on the small 

dataset, for efficient fine tuning. After that, for inference we performed Grid 

Search [9], for searching the best result of images by: trying different wording 

prompts, number of inference step range (the larger the number, the image is more 

detailed and complex, but takes more time), seeds (the initial starting point of the 

image generation) and scale range (how much the model instructed by the prompt 

or has creative freedom). We chose the best combination results according to the 

SVG output. 

At the end, we converted the images output of the stable diffusion to SVG with 

Potrace. At first, the results weren’t good because the stable diffusion tends to 

generate dark background images, although the prompt indicates a white 

background. This resulted in a larger SVG output in terms of tokens count. We 

converted the dark background to white with the CV2 python library. 
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Prompt Before Fine Tune Generated Image 

(After Fine Tune) 

Converted 

Background 

A black 

silhouette of 

a pig with 

white 

background 

 
 

 

A black 

silhouette of 

man and 

woman 

holding 

hands with 

white 

background 

 
 

 

Figure 5. Example of prompts and generated images before and after fine tuning 

and converted the background to white (from left to right). 

 

5.3.1 Scaling Up to 10K samples 

The fine tune process is a loop of: generating (in inference time) images of the 

friendly SVG style (after fine tuning on the small dataset) and then feed it to the 

model for continuing fine tune, the wrapper of prompts be: a black-and-white 

silhouette of {processed_line} on a solid white background.  

For the inference and the continue fine tune, we used two datasets of image 

description and their corresponding image, COCO dataset and 2M text to image 

dataset, and we used only the textual description of those datasets for diverse 

results. The descriptions were too complex for the model (were long with complex 

adjectives). To avoid it, we used GPT 4o mini for simplification with prompt 

engineering method - we described some examples of prompts to the model and it 

learns to generate simplified prompts like the examples. 
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Figure 6. Prompt engineering method for simplification 

 

Figure 7. Scaling up process 

In the inference time, we filtered the images with tokens count of the converted 

SVG and CLIP similarity score threshold. When an image got a CLIP score that 

above from the threshold, and less than 4K tokens count, the image accepted. 

The results weren’t high quality enough. Most of them were good, part of the 

images wasn’t detailed enough and related to the prompt, part of them were absurd 

with anomalies. We assumed that the model isn’t strong enough to produce 

detailed images when the prompt requires a silhouette style. 

 

 

 

 

"""I have a caption and I want to make it slightly simpler (w.r.t 
background and colors) and specific, and turn it a caption that 
describes the same thing If the caption is not appropriate to be 
converted, respond with “NO”. For example: 

1. "pink photo of Tokyo" → "buildings in Tokyo"  
2. "Nickelodeon Paw Patrol'Calling All Pups' Soft Potty 

Seat" → "NO" 

do this for the following caption: "{context}". 

Format your response as 

<simplified> 
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Simplified Prompt (without wrapper) Generated Image 

a girl sitting with presents and a dog 

on the floor 

 

a baby on a bed with a laptop  

a batter swinging a bat  

A girl playing volleyball in a gym  

Figure 8. Examples of generated images at different quality levels (from highest 

quality at the top to lowest at the bottom) 
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Figure 9. Distribution of token lengths (subset of 1000 images) 

 

5.4 FLUX - Scaling Up to ~1.5M samples 

FLUX [10] is a generative model who is stronger and more sophisticated model 

from stable diffusion and created by Black Forest Lab. From their official blog: 

“All public FLUX.1 models are based on a hybrid architecture of multimodal and 

parallel diffusion transformer blocks and scaled to 12B parameters. We improve 

over previous state-of-the-art diffusion models”.  

As mentioned above, FLUX produced better results than diffusion models such as 

Stable Diffusion, so we aimed to use FLUX with prompt engineering to generate 

more detailed and higher quality images. We tried different prompts for generating 

images and chose the accurate one. Prompt example: minimal {object} with clean 

outlines, flat fills, high contrast, scalable vector-style graphic. There is also a 

negative prompt, which instructs the model not to generate images related to the 

following concepts: photorealistic, noise, texture, watercolor, gradients, film grain, 

and shading. We used the FLUX.1-schnell model for inferencing, COCO and 2M 

text to image datasets (that mentioned before) for prompts. At the end we 
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successfully generated approximately 1.5M images with FLUX, and new dataset 

of triplets of text, images and SVG. 

 

Simplified Prompt Generated Image 

a boy wearing 

headphones looking at a 

computer 

 

a woman marking a cake 

with a knife 

 

Figure 10. Examples of generated images from FLUX model 

 

6 Fine Tune Llama  

Llama 3 [11] is a family generative text models released by Meta. On this project 

we fine tune Llama 3 8B instruct with LoRa (for a more efficient process), 8B 

indicates the size of the parameters. The model input is a text and the output is 

generated text or code only. 

The task for the fine tuning was next token prediction - the model predicts the next 

token in the SVG output. The text input wrapped with special tokens that indicate 

the start and the end of the input: <|ctx|> and <|objs|> , and the output SVG 

wrapped with special token that indicates the end of the SVG: <|end_svg|> 

It’s a self-supervised learning technique, where the model generates implicit labels 

for unstructured data instead of relying on a labeled dataset. In this setup, the 
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model learns to predict the next token in the SVG sequence given the previous 

ones. 

We tried fine tune Llama on the FLUX dataset - which yielded good results but 

most of them consist of more than 8K tokens in the converted SVG. The context 

window of Llama is 8K tokens. As a result, during the fine-tune process, many 

tokens of the SVG were cut, which led to the use of an inappropriate SVG, and the 

fine tune on our dataset failed. To overcome it, we used the OmniSVG dataset. 

6.1 Fine Tune Llama on OmniSVG Dataset 

OmniSVG dataset divided into illustration and icon, and we used the icon dataset - 

for simpler samples, and we fine tune Llama model. 

Each training sample is a pair of (description, SVG) wrapped with prefix and 

suffix prompt, for example: 

 

 

 

 

It’s a simple instruction-response pair. 

In addition, we used different Hugging Face’s libraries and filtered by the size of 

the SVG (tokens count). We used a technique called gradient accumulation [12] 

for our core gradient process. Gradient accumulation is a memory optimization 

technique that simulates a larger effective batch size by accumulating the gradients 

calculated from several sequential smaller mini batches before performing a single 

weight update. This technique was necessary because the model is a heavy one, 

allowing us to manage GPU memory constraints and achieve the desired large 

batch size for better convergence. 

Instruction: 

Create a valid minimal SVG for: a red 
apple icon 

Response: 

<svg ...> ... </svg> 
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Figure 12. Loss function relative to ephocs during training 

 

After finishing the fine tune process, we inference on the model. 

Text Before Fine Tune After Fine Tune 

A gray folder features a 

white padlock icon 

symbolizing security or 

privacy 

  

A gray clock icon shows 

time with minimalist 

hands pointing at 10:10 

  

Figure 13. Inference results on the fine tuned LLM - text description and the 

generated SVG, compared before fine tune. 
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7 Experiments 

To evaluate our model's performance, we performed quantitative analyses. 

CLIP similarity score is a text-to-image similarity metric that calculates the 

cosine similarity between the visual embedding of a generated image and the 

textual embedding of a caption. Using the CLIP model, which was pretrained on a 

vast dataset of image-text pairs, this score effectively measures how well an image 

aligns with a given text by positioning both representations in a shared embedding 

space.  

We converted the SVG outputs to image and then checked the similarity score 

between the prompt and the converted image.  

CLIP Similarity Score 0.3 

 

Aesthetic Score represents a numerical value that captures the visual appeal of an 

image, often calculated using CLIP-based or other perceptual metrics. We used an 

Aesthetic Predictor Network, which was trained on human rating. It essentially 

learned what combinations of visual features humans find aesthetically pleasing. 

The final number is the predicted aesthetic score based on what humans would 

rate it. 

We converted the SVG outputs to image and then checked the Aesthetic score.  

Aesthetic Score 4.57 

 

The quantitative evaluation of the generated SVGs performed using two metrics: 

the CLIP similarity score and the Aesthetic score. Each measures a different aspect 

of performance - semantic alignment with the textual input and visual quality of 

the generated output, respectively.  

The achieved CLIP similarity score of 0.3 suggests that the relationship between 

the textual descriptions and the generated SVGs is limited. While the model able 

to capture general object categories (like “triangle”, “circle”, “arrow”), it often 

failed to reproduce the specific semantic details of the prompt, such as color 

attributes, or contextual relationships between objects. 

The low score can be explained by many reasons: first, the generated SVG were 

most of them simple, and the CLIP model trained on raster images with complex 
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texture and color. Therefore, CLIP may underestimate minimalist SVG images 

even when they are structurally correct.  

Second, the model fine tuned in a self supervised technique without visual 

feedback, relying on token prediction. As a result, the model learns the syntactic 

structure of SVG sequences but lacks the ability to assess the visual correctness of 

the rendered output. 

The Aesthetic score of 4.57 shows that even though the generated SVGs didn’t 

always match the text meaning correct, they still looked good visually. This score 

comes from a model that predicts how appealing an image looks to people, based 

on things like composition, balance, and overall visual order. A value above 4 on a 

1-10 scale means the images were clear, and nicely structured. 

8 Conclusion 

The primary objective of this study was to investigate the feasibility of generating 

SVG directly from text prompts using an LLM. To achieve it, we first wanted to 

create a new dataset consisting of text, image and their corresponding SVG. The 

raster images were generated in a specific style suitable for conversion to vector 

format, ensuring consistency and clarity in the resulting SVG files. Various 

methods were explored to build this dataset, including fine-tuning Stable Diffusion 

model and utilizing the FLUX generative model to generate images aligned with 

the textual prompts. At the end, we generated ~1.5M triplets with FLUX. 

During our experiments with fine-tuning, we found that training the LLM directly 

on our dataset didn’t work well. This was mostly because the model’s limited 

context window. Then we decided to switch using the OmniSVG dataset for fine-

tuning.  

The quantitative results, with an average CLIP score of 0.3 and an Aesthetic score 

of 4.57, indicate that the model generated visually coherent SVGs but with limited 

semantic alignment to the input text. 

Overall, this study shows that generating SVGs directly from text using an LLM is 

possible, but there are still some limitations that can be improved in future work. 
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9 Future Work 

To improve fine-tuning results on the LLM, we plan to experiment with chunking 

the SVG outputs. Instead of generating the entire SVG in one long sequence, the 

model will produce it in smaller, structured parts, for example, by splitting it into 

separate “scenes” that can later be combined into a complete SVG. This iterative 

approach could help the model better handle long sequences and capture more 

detailed relationships between text and vector structure. 

In addition, we aim to build on the ideas presented in the OmniSVG paper. One of 

the main limitations of their approach is that, during inference, the model needs to 

generate tens of thousands of tokens for complex samples, which makes the 

generation process slow. The authors suggest that using multi-token prediction and 

key-value cache compression could help reduce the generation cost and improve 

efficiency. In our future work, we plan to explore these directions and test whether 

such techniques can also enhance text-to-SVG generation performance. 
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