~§ II'NTPNLE

The Academic College of Tel Aviv-Yaffo

THE SCHOOL OF COMPUTER SCIENCE

Improved Handwritten Text Recognition (HTR)
Using Classic Data-Augmentation and
Domain-Adaptation Methodologies

July 2023

Thesis submitted in partial fulfilment of the requirements for the M.Sc. degree in the
School of Computer Science of the Academic College of Tel Aviv University

By

Ofer Spivak

The research work for the thesis has been carried out under the supervision of

Dr Sarel Cohen

Contents

1 Background 3
1.1 Machine learning Lo 3
1.1.1 Artificial Neural Network 4

1.2 Computer vision 6
1.2.1 Convolutional neural network (CNN) 6

1.2.2 Generative adversarial networks (GAN) 8

1.3 Optical character recognition (OCR) 9
1.4 Data augmentation 0. 9
1.5 Terms e e 10
2 Introduction 11
3 Method 13
3.1 Datasets 13
3.2 TPS-ResNet-BiLSTM-Attn OCR 13
3.3 Basic augmentations L L oL 15
3.4 Letter-based augmentation 15
3.5 Domain adaptation oo 17
4 Results 18
5 Future Work 19
6 Conclusions 20
7 References 21
8 Appendix 23
8.1 Wiktionary-words-list 23

1 Background

This chapter provides the theoretical background necessary for understanding
the research.

First, define machine learning, neural networks and computer vision. We
will then define Convolutional Neural Networks (CNN) and Optical Character
Recognition (OCR).

1.1 Machine learning

Machine learning focuses on constructing algorithms for enabling predictions
from data. A machine learning task aims to identify (”learn”) a function f: X —
Y that maps the input domain X (of data) onto output domain Y (of possible
predictions). The function f is selected from a certain function class, which is
different for each family of learning algorithms [3].

It is common to classify machine-learning learning methods into four cate-
gories. This categorisation depends on the type of inputs and outputs of the
learning system. We will review supervised and unsupervised learning in this
section. The other types of learning methods are semi-supervised and reinforce-
ment learning.

Supervised learning Supervised learning algorithms’ goal is to construct
an accurate prediction function f for new input data based on what it has
learnt from previous data (Training dataset). To gain this ability, this type of
learning requires labelled examples ((z,y) € X x Y') with the correct answer.
The objective of the learning process is to minimise the difference between the
prediction function output f(z) and the labelled true output y.

The supervised learning tasks can be divided into two main areas -

Classification Classification tasks goal is to predict an output of a finite
set of classes (categories), y = {c1,...,cn}. The simplest classification scenario
is binary, in which there are two classes [3]. For example, predicting whether
an email message is a spam or not.

Regression Regression tasks goal is to predict a simple pattern in the
data and output a real number, y = R. For example to find a linear function
that best predicts a baby’s birth weight on the basis of ultrasound measures
[14].

Unsupervised learning In unsupervised learning the training data consists
of a set of input vectors X without any corresponding target values [4].

The most striking example of unsupervised learning is when it is used to
discover groups of similar examples within the data (clustering). The goal is to
construct a function f that partitions an unlabeled dataset into k = |Y| clusters,
with Y being the set of cluster indices. Data instances assigned to the same

cluster should presumably be more similar to each other than to data instances
assigned to any other cluster [3].

Other examples determine the distribution of data within the input space,
known as density estimation, or project the data from a high-dimensional space
down to two or three dimensions for the purpose of visualization [4].

1.1.1 Artificial Neural Network

Artificial neural networks are machine learning models inspired by the structure
of neural networks in the brain.

An artificial neural network can be described as a directed graph whose nodes
correspond to neurons and whose edges correspond to links between them. Each
neuron receives as input a weighted sum of the outputs of the neurons connected
to its incoming edges [14].

Activation
function

output
y

Figure 1: Single neuron schema

The function of a single neuron can be demonstrated as depicted in Fig. 1.
First, it receives inputs {x1, ..., ., } from the previous layer that it is connected
to. Weights {w1, ..., w,} are set for each connection of two neurons respectively.
Then the weighted sum is calculated and the bias is added to the total sum
value. (see Eq. 1). The bias plays a role similar to the constant in linear
functions, whereby the line is shifted according to the constant’s value.

y=f (b + inwi) (1)
i=1

After calculating the weighted sum with the bias the neuron applies the
activation funcation o on the sum value (see Fig. 1). The activation function
goal is to set the output values, for example, for classification, the activation
function returns a value between 0 and 1 which we can infer to be how confident
the model is that an example instance belongs to the specific predicted class.
Or for regression, the activation function can turn the output values into a
continuous numerical value. This is achieved by implementing the activation
function as Linear, Binary step, Sigmoid or Hyperbolic tangent functions.

The artificial neural network is built by connecting its neurons (see Fig 2).
The First layer is called input layer, the last layer is called output layer and in
case there are additional layers, in which data must pass, between the input and
output layers they are called hidden layers.

o —
oo —

oo —

input layer hidden layer output layer

Figure 2: Artificial neural network structure

Training an artificial neural network To enable effective training we must
measure the performance of the artificial neural network. This is done by cal-
culating the loss function (also called a cost function). The basic loss function
is to compute the difference between the output of each training example as it
passes through the network and the actual expected value.

Training the artificial neural network is adapting the network to better han-
dle its task by going over the input samples. In each sample pass, the adaption
is done by adjusting the network weights to improve the overall result’s accu-
racy (meaning reducing the loss function value). It’s common to initialize the
network weights randomly.

Deciding which weight and how much adjustment is required for it is deter-
mined by the back-propagation process. The process involves going back through
the artificial neural network and examining for each connection how the out-
put will alter based on the weight change. One common and simplest back-
propagation method is the optimisation algorithm stochastic gradient descent.
Gradient descent aims to find a function local minimum by taking repeated
steps in the opposite direction of the function gradient.

The step size taken during back-propagation is determined by the learning
rate parameter. This parameter determines how the network weights will adjust,
by smaller or larger steps. In essence, the learning rate, as its name suggests,
determines the ”speed” the artificial neural network learns.

Deep neural network Deep neural networks are artificial neural networks
with multiple, two or more, hidden layers.

Deep neural networks can represent functions of increasing complexity [8]
and give the ability to approximate them much more efficiently (with fewer
neurons) than shallower ones [12].

Each layer in the network recognises a distinct set of features based on the
previous layer’s output. As we advance further through the network, the features
are aggregated and recombined thus each next layer can detect more complex
features. Since simple and more complex features can be detected, deep neural
networks can handle more complex tasks and large high-dimensional datasets.

Even though deep neural networks have existed in the past, several problems
prevented the effective training of the networks [8]. The main problem was the
lack of resources available to train deep neural networks. In the past decades,
the availability of more powerful computers, especially in the field of graphics
processing units (GPUs), and larger datasets resulted in a revival and flourishing
of deep neuronal networks.

1.2 Computer vision

The objectives of computer vision are to gain a high-level understanding of the
content and extract meaningful information from digital images or videos. Com-
puter vision applications include image classification, object detection, image
retrieval, augmented reality, and traffic automation [17]. It is worth mention-
ing that machine learning is an important pillar in advancing computer vision
performance.

Object detection Object detection is one of the classic problems of computer
vision. Object detection includes localization and classification of image regions
and usually uses machine learning (or deep learning) to produce meaningful
results.

Object localization refers to identifying the location of one or more objects
on an image, as well as their boundaries. Object classification refers to assigning
a label to the objects in an image. Object detection combines these two tasks -
draws a bounding box around each object of interest and assigns it a class label.

1.2.1 Convolutional neural network (CNN)

The advancements in Computer Vision with Deep Learning have been perfected
over time, primarily through one particular algorithm — a Convolutional Neural
Network [13].

Even a small size image contains a large amount of information thus the
number of parameters in the network quickly becomes extremely large as the
image size increases. The role of the convolutional network is to reduce the
images into a form which is easier to process, without losing features which are
critical for getting a good prediction [13]. The price paid for this reduction in
parameters is that our features are now translation invariant [18].

The basic idea of the convolutional neural network was inspired by a concept
in biology called the receptive field [7]. Receptive fields act as detectors that
are sensitive to certain types of stimulus in animals’ visual cortex, for example,
edges. A collection of such fields overlap to cover the entire visual area. The
convolution operation is used in computer vision to mimic this ability. In image
processing, images can be filtered using convolution to produce different visible
effects. Fig. 3 shows how a convolutional filter detects edges from an image,
functioning similarly to a receptive field.

Image (f) Filter matrix (g) Output (h}

Nk =
h NN
~

Figure 3: How convolution filtering is used to detect edges from an image.

The element involved in carrying out the convolution operation in the first
part of a convolutional layer is called the Kernel/Filter [13]. The shape of the
convolution window is given by the height and width of the kernel [18].

In the two-dimensional convolutional operation, we begin with the convolu-
tion window positioned at the upper-left corner of the input and slide it across
it, both from left to right and top to bottom. When the convolution window
slides to a certain position, the input sub-matrix contained in that window and
the kernel are multiplied element-wise and summed up (see Eq. 2). The result
is the value of the output at the corresponding location [18]. In neural networks,
the output matrix is also called a feature map [8].

Input Kernel Qutput
0|1]2

0|1 19125
3|45 * =

2|3 37143
6|78

Figure 4: Two-dimensional convolutional operation
[18]

To be exact, in mathematics, the discrete convolution between two two-

dimensional functions is defined as:

hli il = (f*9)(i,5) =YY fa,b)g(i —a,j —b) (2)
a b

where:
h: Output of the convolution operation

f: Input (image matrix)
g: Kernel/filter
i,7: row, column indexes of the result matrix

a,b: both positive and negative offsets from i and j, covering the entire
image

For the values in the example Fig. 4 the output computations are:

O0x0+1x14+3x24+4x3=19
1x0+2x144x24+5%x3=25
3x0+4x14+6%x24+7x3=37
4x04+5x14+7x2+8x3=43

Successive convolutional layers form a convolutional neural network. In ma-
chine learning training the convolutional neural network is done by treating the
kernel matrix as the parameters of the neurons and replacing the multiplication
operator with the convolution operation. Likewise, the back-propagation is also
applicable to convolutional networks (see section 1.1.1).

1.2.2 Generative adversarial networks (GAN)

Generative adversarial networks (GANs) are machine learning frameworks in-
troduced in a paper by Ian Goodfellow and his colleagues [9]. The GANs frame-
works are used to generate new synthetic instances of data that holds the same
statistics as the training set and are used broadly in image generation.

GANSs use two neural networks, one, the generative model, which generates
new synthetic data instances while the other, the discriminative model, evaluates
whether the data is statistically similar to the actual training dataset, or in other
words, whether they are real or fake.

In essence, the generative model attempt to predict the features given a
label, in contrast, the discriminative model attempt to predict a label to which
the data belongs.

The two models are trained together - the generative model generates in-
stances that are provided to the discriminator along with actual cases from the
training dataset. The discriminator classifies them as real or fake. The discrimi-
nator is then updated to improve the distinction, and importantly, the generator
is updated based on how well the generated samples passed the discriminator.

1.3 Optical character recognition (OCR)

Optical character recognition (OCR) is a field of research in computer vision,
pattern recognition and machine learning. This technology enables the identi-
fication and extraction of text or numerical data, whether typed, handwritten,
or printed, from a digital image.

OCR applications have evolved into multiple domain-specific OCRs: License
plate recognition, Automatic Passport recognition, Traffic sign recognition, De-
feating CAPTCHASs, Textual version of scanned or printed documents and con-
verting handwritten documents into machine-encoded text.

There are indeed good solutions for certain OCR tasks that do not require
deep learning. However, to step forward towards better, more general solutions,
deep learning will be mandatory [16].

In recent years most OCRs have been built by concatenating several neural
networks (two or more), in which one network feeds the other. For example,
the STN-OCR integrates and jointly learns with a spatial transformer network
that detects text regions in an image and a text recognition network that takes
the identified text regions and recognizes their textual content [2].

Localization Network Grid Generator BBoxes of text regions
e N - N B PR R PR PR
1M EREIRNE L U R I S
VR SR
............
Extracted Text Regions _ Output
& A
i3 slAERE 1)\ E i
% . YRR R -
1z 1O 10 LI O} O] H é
- "6 6"
Sampler Recognition Network 2

Figure 5: STN-OCR Structure

1.4 Data augmentation

Data augmentations are a set of techniques aimed at increasing the amount of
data by adding realistic synthetic data based on existing real data. It became
standard practice for training machine learning models for computer vision ap-
plications. One possible way to enable it is to use these newly generated images
by adding them to the original training set, essentially augmenting the set in a
bootstrap manner [15].

Classic and advanced augmentation methods can create new synthetic data.
Classic augmentation refers to rotation, transformation, stretching, noise injec-
tion, colour modification, cropping, etc. to enlarge the visual variability of the
data [15]. Advanced augmentation refers to using machine learning tools to
transform an image from one domain to another, mainly by using Generative
adversarial networks (GANs).

1.5 Terms

Training dataset The training dataset is used to train the machine learning
model. The model goes over this dataset and learns from it (i.e. adjust the
weights in an artificial neural network).

Test dataset The test dataset is used to evaluate the model. It is used only
after the model is trained. Its content is chosen so it contains data belonging to
various classes that the model has to deal with.

Loss function The loss function computes the difference between the output
of each training example as it passes through the network and the actual ex-
pected value. Thus measures how well the neural network models the training
data. Our goal is to reduce the loss function value between training iterations.

Receptive field In animals’ visual cortex the receptive field act as a detector
that is sensitive to certain types of stimulus. In computer vision, the convolution
operation is used to mimic this ability. For example, a convolutional filter
detects image edges functioning similarly to a receptive field (see section 1.2.1).

Feature Map The feature map is the output matrix that is generated by
applying the convolutional operation on an input image (see section 1.2.1).

10

2 Introduction

One of the greatest achievements of humankind is the ability to write and thus
document and share knowledge between people. The invention of writing is a
significant step in the transition from pre-history to history, and indeed most of
the evidence for historical events can be found in surviving manuscripts.

Technological progress and the extensive use of technological means led to
the documentation of events using print. From the days of the invention of the
printing press to the present day when the information is digital and most likely
the text created will not meet a page, the printed text is dominant.

And despite all this, handwritten text, even today, constitutes a significant
part of documenting and sharing text. In addition, it should be noted that there
are many texts and books that were written by hand in the past that we would
like to process.

While OCR systems performance has improved significantly in the deep learning
era [15] and in recent years are capable to handle printed text, the handwritten
text recognition doesn’t seem to be up to par. We attribute this gap to the lack
of versatile, annotated handwritten text datasets and the difficulty and cost of
obtaining it [15].

One possible approach to reduce the difficulty in collecting and labelling is
by using automation to create additional synthetic training data, whether it be
using generative adversarial networks (GANSs) or classic augmentation methods
(see 1.4). In most cases, the approach uses deep learning methods for generating
synthetic training data. But we need to take into account that deep learning
methods are limited by their tendency to error even when introducing small (in
some cases even invisible) modifications to the input.

This thesis aims to check if OCRs’ handwritten text recognition performance can
be improved via domain adaptation and classic augmentation. Our approach is
to use classic augmentation methods to create synthetic training datasets based
on one of our obtained databases’ styling and lexicon.

Firstly, we obtained the TAM and CVL handwriting databases and aug-
mented based on the CVL database. The new augmented, statistically similar,
database is marked as CV L.

Afterwards, we trained the TPS-ResNet-BiLSTM-Attn OCR (see 3.2) on
the IAM Handwriting database. Then we fine-tuned our trained OCR with the
newly created synthetic augmented database (CV'L).

Now we have 2 trained OCRs, the ITAM Handwriting database trained TPS-
ResNet-BiLSTM-Attn OCR and the (CVL) fine-tuned TPS-ResNet-BiLSTM-
Attn OCR.

We verified our approach by running the (CVL) fine-tuned OCR on the
original CVL database test set. We also compared it with the result of the
[AM-trained OCR running against the original CVL database test set. Note,
this is without exposing the OCRs to the real CVL database training set.

(see sections 3 and 4)

11

Obtaining Databases IAM CVL

Breaking down Each writer’s words were broken down
words to letters into their constituent letters
‘Web-based

CVL lexicon
based synthetic
dataset

Synthetic datasets
(Based on CVL)

(Wiktionary)
lexicon based
synthetic dataset

IAM OCR training
IAM OCR creation and test on
TAM database

Fine-tune TAM OCR CVL lexicon Web-based
on synthetic synthetic lexicon synthetic
CVL like datasets dataset OCR dataset OCR
Verification against ‘ h
CVL database 57.835% 46.684% 32.532%
test set

Table 1: Scheme describing the stages of the study

12

3 Method

This chapter provides the different tools used and stages of the research.

First, a review of the obtained handwriting databases, the PS-ResNet-BiLSTM-
Attn OCR, and then, the stages of the data augmentation and domain adapta-
tion.

3.1 Datasets

This study requires labelled handwritten word text image examples, therefore
we obtained the following, well researched, datasets:

TAM Handwriting Database - The IAM handwriting database contains
forms of handwritten English text which can be used to train and test
handwritten text recognizers and to perform writer identification and ver-
ification experiments [10]. It contains around 100K images of words from
657 writers.

CVL - The CVL Database is a public database for writer retrieval, writer
identification and word spotting. The database consists of 7 different
handwritten texts (1 German and 6 English Texts). [5][6]

One of our goals is to be able to compare the results of this research and the
ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text Generation
[15] paper. Hence, we used the same datasets’ partition as described in it.

The TAM database partition into directories, training and test sets, was
as described in the Laia: A deep learning toolkit for HTR(handwritten text
recognition) paper [11].

The CVL database is already divided into a training set and a test set and
is used as is.

OCRs use Lightning Memory-Mapped Database (LMDB) file format as their
input. Therefore, To enable the use of the IAM and CVL datasets in OCRs
the datasets were converted to the LMDB format. The conversion was done
as described in the Scrabble GAN: Semi-Supervised Varying Length Handwritten
Text Generation [15] GitHub project?

3.2 TPS-ResNet-BiLSTM-Attn OCR

The TPS-ResNet-BiLSTM-Attn OCR was selected for its high prediction rate

[1].
As its name suggests, the TPS-ResNet-BiLSTM-Attn OCR. consists of 4
steps (4 concatenated artificial neural networks) -

IDirect URL for the IAM Laia paper partition -https://github.com/jpuigcerver/Laia/
tree/master/egs/iam/data/part/lines/original

27ScrabbleGAN: GitHub project - https://github.com/amzn/convolutional-handwriting-
gan

13

Transformation (Trans.), Feature extraction (Feat.), Sequence modelling (Seq.),
Prediction (Pred.).

Normalized image X Visual feature V Contextual feature H Prediction Y

Figure 6: Visualisation of TPS-ResNet-BiLSTM-Attn flow [1]

This OCR model is derived from commonalities among independently pro-
posed scene text recognition models [1]. Due to its task resemblance to com-
puter vision tasks such as object detection and sequence prediction, it has bene-
fited from convolutional neural networks (CNNs) and recurrent neural networks

(RNNs).

Transformation This step is responsible for transforming and normalizing
the input text image.

The real-world input image comes in various shapes and angles and the goal
of the transformation step is to normalize it into a predefined rectangle. In case
the input images are not normalized the successive feature extraction step will
have to lift the burden of learning such geometries.

The transformation is done using Thin-Plate Spline (TPS). The TPS finds
several points at the upper and lower wrapping points (the green '+’ signs in
Fig. 6) and normalizes the text image’s area to a predefined rectangle. The
TPS is made up of several processes:

e Localisation network - finding a text boundary by calculating x, y coordi-
nates of the wrapping points on the input image.

e Grid generator - linking the location of the pixels in the boundary to
those of the normalized image by providing a mapping function from the
localisation network identified region to the normalized image.

e Image sampler - generating a normalized image by using the input image
pixels values and the grid generator linking information.

Feature extraction In this step, a convolutional neural network (CNN) is
used to extract visual features map V = {v;}® from the input image (received
from the transformation step).

Each column in the feature extraction output features map is used to predict
the character in it. These features map column is related to a distinguishable
receptive field along the horizontal line of the input image.

ResNet was previously used as a feature extractor for OCR. It is a CNN with
residual connections that eases the training of relatively deeper CNNs [1]. The
output of the ResNet is 512 channels X 26 columns.

34 is the feature map columns number

14

Sequence modeling Each column in the feature extraction step feature map
v; € V is used as a frame of the sequence (H = Seq.(V)) [1].

Due to previous works in which the sequence suffered a lack of contextual
information, the Bidirectional LSTM (BiLSTM) is used to add contextual in-
formation to the sequence.

Prediction In this stage, the attention-based sequence prediction (Attn) is
used to predict the character sequence (Y = y1,¥2,...,yn) from the Sequence
modelling step output, H.

The Attn network automatically captures the information flow within the
input sequence to predict the output sequence. It enables the model to learn a
character-level language model representing output class dependencies [1].

3.3 Basic augmentations

Initially, we tried to use basic classic augmentation on the whole word image to
create a synthetic training dataset (see 1.4).

The basic classic augmentation included, among other methods, the use of
changing the background colour, changing the background texture, projections
and rotation at different angles.

The augmentations were done on word images taken from the CVL database
training dataset.

L i

(a) Background texture change

(b) Background color change

Figure 7: Classic basic augmentation on CVL word images

These basic augmentations created a small variety and haven’t enlarged
significantly our synthetic training set permutations. Therefore, we decided not
to proceed with this approach.

3.4 Letter-based augmentation

Our next approach was to create a letter-based synthetic dataset.
The CVL database training dataset was divided according to its writers,
then, each writer’s words-images were broken down into their constituent letters.
Thus we had for each letter, approximately, five types: a capital letter, a
single letter, a letter at the beginning of a word, at the end of a word and in the
middle of a word. Hence we had around 130 letters permutations per writer.

15

In some cases, we had more than one letter per type per writer. In other cases,
not all letters had all five types.

NN
\\ Q N

Figure 8: Breakdown of the word has

The dataset creation was done by going over a lexicon’s words and concate-
nating a single writer’s letters, consequently creating new synthetic word images
for each of the CVL database training set writers.

Fach newly created word was composed, only, of letters of the same writer
due to significant differences in the letters’ form between different writers.

/:1/ A (1 ‘.-"',JH'FJ

Figure 9: The letter 'a’ of writer 1 (left side) versus writer 3 (right side)

At this point, it was decided to use two lexicons for generating two synthetic
datasets. The first one was by using the CVL database training set lexicon,
which was revealed to be quite small. The second lexicon was a web-based
words lexicon from Wiktionary (see appendix 8.1). The objective was to have
a large set of words to process.

We created a different synthetic dataset for each lexicon, CVL and web-
based. As mentioned in 3.1, to be able to process the newly created datasets by
OCRs both datasets had been converted into the LMDB file format.

16

3.5 Domain adaptation

Domain adaptation is used to improve the performance of a machine learning
model on a target domain by using a well-trained model on a related source
domain (which has the same feature space) without re-training it on the target
model. This technique saves computational resources and allows us to obtain
trained models on different domains, even those that lack significant data or are
difficult to train on.

in our case, the model is the TPS-ResNet-BiLSTM-Attn OCR, the source
domain is the TAM database training dataset and the target model is the CVL
database dataset.

IAM TPS-ResNet-BiLSTM-Attn OCR As we aimed to implement the
domain adaptation between IAM and the CVL handwriting databases, firstly
we need to obtain an TAM Handwriting database trained OCR.

To generate an IAM Handwriting database trained OCR, we obtained the
pre-trained TPS-ResNet-BiLSTM-Attn OCR (see section 3.2) and based our
training code according to the What Is Wrong With Scene Text Recognition
Model Comparisons? Dataset and Model Analysis [1] GitHub project®.

Afterwards, we fine-tuned, by running the OCR’s train function iterations,
on the obtained T'PS-ResNet-BiLSTM-Attn OCR on the IAM database training
set. The Accuracy was validated against the TAM database test set. We were
able to reach an accuracy of 78.827% before we started to get overfitting.

At this stage, we have the TAM Handwriting database trained TPS-
ResNet-BiLSTM-Attn OCR °.

Fine-tuning using the classic by-letter augmentations We can now
continue the domain adaptation process and fine-tune the IAM Handwriting
database trained OCR using the letter-based augmentation datasets we created
(see section 3.4).

For tracking ability, we perform the fine-tuning in batches, For every 500
training iterations, we performed the check against the CVL database test set.
This was done on both CVL and web-based lexicon synthetic datasets.

The fine-tuned CVL and web-based lexicon synthetic datasets OCRs and as
well as the TAM Handwriting database trained OCR results are discussed in
section 4.

47What Is Wrong With Scene Text Recognition Model Comparisons: GitHub project -
https://github.com/clovaai/deep-text-recognition-benchmark
S5TAM Handwriting database trained OCR for brevity

17

4 Results

As the first step and to establish a baseline, we ran the TAM Handwriting
database trained OCR against the CVL database test set. Next, as mentioned in
section 3.5, we ran the fine-tuned CVL and web-based lexicon synthetic datasets
OCRs against the CVL database test set.

The IAM Handwriting database trained OCR resulting accuracy was 57.853%.
In comparison, the web-based lexicon synthetic dataset OCR’s best-resulting ac-
curacy was 33.225%. Significantly low compared to the established baseline. As
can be seen in table 2, no improvements were made from one iteration batch
to another. likewise, the CVL lexicon synthetic dataset OCR’s best-resulting
accuracy was 46.684%. Significantly low compared to the baseline as well.

As can be seen in table 2 below, we stopped the CVL lexicon synthetic dataset
OCR runs after 3 batch iterations. This is because no significant improvement
was shown between the batch iterations, and we have already established in the
web-based lexicon synthetic dataset OCR runs that there is no expectation for a
leap in accuracy with additional iterations.

Furthermore, it can also be noticed that the accuracy results of the CVL
lexicon synthetic datasets OCR are significantly higher than the web-based lexi-
con synthetic datasets OCR. This result might be explained by the fact that the
CVL lexicon synthetic datasets OCR was fine-tuned using closer to or similar
to the CVL database datasets samples.

after after after after after
OCR 500 1000 1500 2000 2500
iteration | iteration | iteration | iteration | iteration
IAM database 57.835% 6

trained OCR
web-based lexicon
synthetic datasets 33.223% | 32.060% | 31.211% | 32.532% | 31.972%

OCR
CVL lexicon
synthetic datasets 43.661% | 46.675% | 46.684% -
OCR

Table 2: OCRs’ performance on the CVL database test set per 500 iterations

6The IAM database trained OCR validated against the CVL database test set once it was
trained on the IAM Handwriting database training set.

18

5 Future Work

We like to recommend several future steps and experiences that can be per-
formed in order to expand the understanding in light of the above results.

Firstly, to fine-tune the TPS-ResNet-BiLSTM-Attn OCR on the CVL database
training set and validate it against the IAM database test set.

This should give us an additional cross-domain benchmark. Assisting to
understand whether the above results are correct and honest or are due to the
route we chose - to produce synthetic data precisely from CVL and not from
the TAM.

Additionally, to fine-tune the IAM Handwriting database trained OCR on the
CVL database original training set and validate it against the CVL database
test set. In the next step, compare this newly CVL fine-tuned OCR test set run
result with the TAM Handwriting database trained OCR test set run result.

In case the CVL fine-tuned OCR doesn’t show significantly better results,
there is no point in continuing the experiments with the synthetic data. This
indicates that there is a problem with the experimental infrastructure

Another suggested step is to check the relative contribution of synthetic
data. This can be achieved by training the TPS-ResNet-BiLSTM-Attn OCR
on the CVL database training set without involving the IAM database at all.
(same as we did to generate the TAM Handwriting database trained OCR - see
3.5) Afterwards, to fine-tune the above newly created CVL trained OCR on the
synthetic CVL datasets.

Now we can compare the results of the CVL trained OCR and the synthetic
CVL datasets OCRs validations against the CVL database test set, and to see
the impact of the synthetic datasets on the OCR’s capabilities.

Also, to enhance the check for the contribution of synthetic data we suggest
creating new training datasets based on the TAM training set. One consists of
40% of the words in the set, the second consists of 20% of words in the set, and
another one consists of synthetic information created as explained next.

The synthetic dataset will be based on the remaining 80% of the set (in
accordance with the second created dataset described above). Similar to what
was done for the latter-based-augmentation (see section 3.4), we will break and
reassemble words according to the IAM lexicon. From this constructed dataset,
we will take a random amount equal to 20% of the words in the set and add it
to the second dataset described above (the 20% dataset based on the original
TAM).

Next, we will train a TPS-ResNet-BiLSTM-Attn OCR on the first con-
structed dataset (the 40% dataset based on the original TAM) and another
TPS-ResNet-BiLSTM-Attn OCR on the synthetic dataset described above. Test
both OCRs against the IAM test dataset and compare their results. This should
give us an additional indication of the impact of the synthetic datasets on the
OCRs’ capabilities.

19

6 Conclusions

In this study, we have presented a new approach to the generation of handwrit-
ten text images using a classic augmentation method. Each word is constructed
by concatenating characters’ images to generate a new word image.

In essence, from the results (see section 4), we can conclude that using letter-
based augmentation (see section 3.4) isn’t the right approach to improve OCRs’
performance.

However, as can be seen in the ScrabbleGAN: Semi-Supervised Varying Length
Handwritten Text Generation ([15]), data augmentation indeed helps in enlarg-
ing the labelled training sets and should be continued used as a valid tool for
improving machine learning models.

The above results can be reconciled by the fact that, certainly, the same letter,
by the same writer, can be written differently in different words (due to con-
tiguity with other letters, for example). Thus concatenating a writer’s letters
into a new word might not result in a word that is statistically similar to the
actual training dataset words.

In addition, the concatenation might add noise at the pixel level, as each
letter might be taken from a different word image, combined with the tendency
of deep learning methods to error when introducing, even remote, modifications
to the input resulting in the above results.

20

References

Jeonghun Baek et al. “What is wrong with scene text recognition model
comparisons? dataset and model analysis”. In: CoRR abs/1904.01906 (2019).
arXiv: 1904.01906. URL: http://arxiv.org/abs/1904.01906.

Christian Bartz, Haojin Yang, and Christoph Meinel. STN-OCR: A single
Neural Network for Text Detection and Text Recognition. 2017. arXiv: 17
07.08831 [cs.CV].

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine
learning: Parallel and distributed approaches. Cambridge University Press,
2011.

Christopher M. Bishop. Pattern Recognition and Machine Learning: All
"just the Facts 101”7 Material. Springer (India) Private Limited, 2016.

CVL-DATABASE. https://cvl.tuwien.ac.at/research/cvl-databa
ses/an-off-line-database-for-writer-retrieval-writer-identif
ication-and-word-spotting/.

Florian Kleber, Stefan Fiel, Markus Diem, Robert Sablatnig. “CVL-Database:
An Off-line Database for Writer Retrieval, Writer Identification and Word

Spotting, In Proc. of the 12th Int. Conference on Document Analysis and
Recognition (ICDAR) 2013, pp. 560-564”. In: (2013).

Kunihiko Fukushima. “Neocognitron: A hierarchical neural network capa-
ble of visual pattern recognition”. In: Neural networks 1.2 (1988), pp. 119
130.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. ht
tp://wuw.deeplearningbook.org. MIT Press, 2016.

Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

IAM Handwriting Database. https://fki.tic.heia-fr.ch/databases
/iam-handwriting-database.

Joan Puigcerver, Daniel Martin-Albo, and Mauricio Villegas. Laia: A deep
learning toolkit for HTR. https://github. com/ jpuigcerver /Laia.
GitHub repository. 2016.

David Rolnick and Max Tegmark. “The power of deeper networks for
expressing natural functions”. In: CoRR abs/1705.05502 (2017). arXiv:
1705.05502. URL: http://arxiv.org/abs/1705.05502.

Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks
— the ELI5 way. https://towardsdatascience.com/a-comprehensiv
e-guide-to-convolutional-neural-networks-the-elib-way-3bd2b
1164a53.

Shai Ben-David Shai Shalev-Shwartz. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

21

Sharon Fogel, Hadar Averbuch-Elor, Sarel Cohen, Shai Mazor, Roee Lit-
man. “ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text
Generation”. In: (2020).

Gidi Shperber. A gentle introduction to OCR. https://towardsdatasci
ence.com/a-gentle-introduction-to-ocr-eel469a201aa.

Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

Aston Zhang et al. “Dive into deep learning”. In: arXiv preprint arXiv:2106.11342
(2021).

22

8 Appendix

8.1 Wiktionary-words-list

The list of the top 100,000 most frequently-used English words according to
Wiktionary. It was compiled in August 2005 and coalesced into a handy list for
use in John the Ripper.

Sources:

{http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#To
p_English_words_lists

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/1-10000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/10001-20000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/20001-30000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/30001-40000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/40001-50000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/50001-60000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/60001-70000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/70001-80000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/80001-90000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG
/2005/08/90001-100000

23

