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1 Introduction

Digital color cameras aim to record the light reflected/emitted from a
scene in three color channels: Red, Green, and Blue (RGB). This is most
commonly achieved using an optical system which includes a single CMOS
sensor overlaid with a “Bayer filter mosaic” also known as an RGB Color
Filter Array (CFA). This CFA allows a monochrome light sensor to record
RGB color information at the expense of spatial sub-sampling. Figure 1.1
depicts a commonly used RGB Bayer filter pattern. While alternative cam-
era configurations, such as 3-CCD cameras, can record RGB color informa-
tion without spatial sub-sampling - their use is largely limited to scientific
or other speciality applications.

Reproduction of color images at full sensor resolution from single-sensor
CFA or “Mosaic” cameras, requires some form of interpolation to recover
missing color information from spatially sub-sampled images. This pro-
cess is commonly referred to as “demosaicing”, Figure 1.2 depicts the spa-
tially sub-sampled color channels of an image combined to form a full
color image via demosaicing. Due to the ill-posed nature of the demo-
saicing problem, solutions will invariably suffer from inaccuracies and /or
visual artifacts.

Over the years, demosaicing methods have evolved from simple inter-
polation through more complex and spatially-aware methods [18, 20], to
machine-learning based solutions. Most recently, deep neural nets and
particularly Convolutional Neural Nets (CNNs) have emerged as the lead-
ing methodologies for state-of-the-art demosaicing performance. As with
most modern machine-learning systems, advanced demosaicing systems
require significant amounts of data for training and testing.

This paper will review recent methodologies for demosaicing, the data-
sets used to train them, and highlight possible shortcomings of current
training methodologies. These shortcomings will be expirementally demon-
stated and quantified. Finally, a data-set and training framework will be
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proposed to reduce the dependence of demosaicing methods on camera-
specific training data, while increasing their camera-specific performance.

Figure 1.1: RGB Bayer Filter in a “GRBG” order of arrangement. Other
common filter orders include “BGGR”, “RGBG”, and “RGGB”.
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Figure 1.2: Depiction of a Bayer mosaic image (a) and its red (b), green (c),
and blue (d) components, combined to form a full color image via demo-
saicing (e). The resulting image is somewhat degraded when compared to
a fully spatially sampled image (f).

(a) (b) (©) (d) (e)



2 Previous Work

2.1 Demosaicing

Most Digital cameras capture only a single color for each pixel (commonly
Red, Blue, Green) in a CFA pattern. Demosaicing is the process of interpo-
lating the full color information for each pixel given these sub-samples.

Early demosaicing solutions suggested interpolations such as Bilinear in-
terpolation [16]. Bilinear interpolation calculates the missing color based
on averaging the neighboring pixels of the same color. Although simple
and time efficient, this method works well mainly on flat areas, and tends
to produce significant artifacting such as ”zippper” patterns and moiré in
more complex and textured areas.

In order to overcome these issues, more advanced interpolations methods
were proposed, which leveraged inter-channel correlations and consid-
ered spatial features (such as edges and gradients) within the image [18].
Zhang et al. [27] also exploited the image nonlocal redundancy to improve
the local color reproduction result. They first use local directional interpo-
lation (LDI) within local window to create multiple estimates of the miss-
ing color sample. Than, nonlocal pixels that are similar to the estimated
pixel are searched. Nonlocal adaptive threshholding is used to improve
the estimate. This allows the reconstruction to use the structural qualities
of the image and not only be applied on a pixel level. Many previous solu-
tions have been based on the assumption of high spectral correlation, and
were bound to fail around areas like edges, where this correlations are of-
ten weak. This method uses the fact that in natural images similar patterns
can be found in further away areas of an image. These patterns can than
be used to better interpolate a given similar patch.

In recent years, deep neural networks have achieved great results for solv-
ing the demosiacing problem, and many state of the art (SOTA) solutions
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are based on this method. For example, Tan et al. [25] suggested a deep
residual convolutional neural network that is trained end-to-end with two
stage architecture: the first step aims to recover a guidance prior from the
G channel by training on a large amount of training images. This is a com-
mon method for reconstruction that is chosen due to the fact that in a Bayer
CFA the red and blue channels cover 25 percent of the images each, where
the green channel covers 50 percent of the total pixels, allowing much bet-
ter accuracy in its reconstruction. The seconds step uses the initial recon-
structed G channel information to reconstruct the R and B channels. This
can be done due to the high correlation between the R G B channels. The
G channel is also refined in the second stage. The residual structure of the
network can be used to further improve the results - a simple algorithm
(such as bilinear interpolation) can first be applied to create an initial full
color image, and the network will use it to predict the residual, meaning
instead of creating the image from scratch it will produce the difference
between the initial given image and the desired reconstructed result. The
algorithm was trained and tested using the Waterloo Exploration Database
(WED).

Cui et al. [9] further extends the multi-stage residual CNN processing by
proposing a 3-stage method. Similar to Tan, the first stage is reconstruct-
ing the green chanel independently. Considering the the differences in the
inter-correlations between G/B and G/R, in the second stage two sepa-
rate networks are used to reconstruct the red and blue channels using the
green channel as guidance. In the third stage, a high quality RGB images
is reconstructed. They chose the training Data set to be WED as well.

2.2 Denoising

Images are inevitably contaminated by noise during acquisition process,
which may visibly degrades the quality of an image. Denoising is the
ill-posed task of trying to restore the true images by removing the noise.
Similar to demosaicing, denoising algorithms also work well in flat areas
of the images, but tend to smooth high textured more complex areas. This
is due to the fact that noise, edges and texture are all high frequency and
therefor are difficult to differentiate during the demosaicing process, lead-
ing to loss of detail in the more complex regions.

Early methods like total variation denoising [22] and wavelet coring [23]
use hand-craft features. Later on, more advanced methods were suggested
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using image priors such as self-similarity [7] and sparse representation [3].
Dabov et al. [10], proposed BM3D which is often regarded as a denoising
benchmark.

In recent years, as is the case with many computer vision tasks, convo-
lutional neural networks (CNNs) have become an increasingly common
method for solving the denoising problem [1]. CNNs based methods are
able to learn more complex spatial and color correlations than previously
proposed methods and have shown state-of-the-art performance.

2.3 Joint ISP tasks

Another significant trend has been the integration of several steps in the
image processing pipeline into a single machine learning system. In the
conventional image processing pipeline, demosaicing precedes denoising.
However, demosaicing can compound image noise, presenting a greater
challenge to any denoising algorithm applied to the demosaiced image.
For this reason, Gharbi et al. [11] proposed a joint demosaicing and de-
noising CNN, trained to overcome moire and other artifacts by training on
images which are prone to them. This approach has become increasingly
common, and has been presented as a distinct challenge track at a CVPR
workshop where 24 methods were presented [1]. Different approaches
suggested combining demosaicing and denoising, denoising and super
resolution, super resolution and demosaicing, and all three - demosaicing,
denoising and super resolution.

In 2019, Qian et al. [21] have proposed integrating demosaicing, denois-
ing, and super-resolution, presenting both the large-scale date-set Pix-
elShift200 (which will be further alaborated in the next section) and Trinity
Enhancement Network (TENet) - a CNN architecture to achieve all three
goals in an holistic perspective. After analyzing the charecteristics of each
task and the interaction between them to try and determine the best order
in which they should be combined, they proposed the following pipeline:
denoising on the raw sensor image (a mosaiced image) — super resolution
— demosaicing.
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Figure 2.1: Trinity Enhancement Network (TENet) is comprised of a joint
denoising and super-resolution module FM and a demosaicing module
CM.

2.4 Data-sets

This section reviews the most commonly used data-sets, comparing them
and discussing their advantages and shortcomings. A systemic review
of literature on demosaicing dating back to 2004 has produced a list of de-
mosaicing focused image data-sets available to researchers, these data-sets
are detailed in Table 2.1. A further review of 25 learning-based demosaic-
ing papers from the years 2019-2022 has highlighted the data-sets for most
commonly used for training/testing in recent work. These data-sets and
their frequency of use are depicted in Figure 2.2, note that published works
may often use two or more data-sets for training and/or testing.

While data-sets for other computer vision tasks have rapidly grown in
scale to hundreds of thousands or even millions of images, data-sets for
RGB demosaicing remain well below the 10,000 image mark. To further
compound the issue of scale, data-sets are often either camera-specific, or
rely on inappropriate methods to generate ground truth data (such as un-
known camera ISP demosaicing algorithms). Despite the increasing avail-
ability of larger data-sets with robust ground-truth data (e.g. Pixelshift[21]),
the majority of recently published papers continue to rely on data-sets
with spatially sub-samples ground truth data (e.g. WED, Flicker2K/500,
MIT, ImageNet, MSR) or very small data-sets with less than 50 images (e.g.
Kodak).

While the Kodak Data set has been vastly used and has been established
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as one of the standard evaluation Data sets in the research community,
multiple issues regarding it have been raised along the years, suggesting
that it’s unrepresentative qualities may have misled the research to some
extent. Besides it’s very small volume, it has been claimed that the Kodak
Data set images have more spectral correlation and and less color satu-
ration when compering with images in other Data sets. When compered
with the target Data set for this problem, which is images captured by
current digital cameras, the images are smoother and have less color sat-
uration. The main issue arises where a basic solution can outperform a
more complex solution that is better tailored for the target digital images,
only due to the fact that it was tested on the Kodak Data set.

A basic requirement for any data-set used to train/test demosaicing sys-
tems is that its images should not be spatially sub-sampled. Early at-
tempts, such as the Kodak data-set, utilized source images which could
be considered fully spatially sampled (such as scanned film negatives').
Although modern solution for fully spatially sampled RGB images ex-
ist, such as 3CCD cameras or Sony “Pixel Shift” technology, the major-
ity of commonly used demosaicing data-sets rely on images which were
originally spatially sub-sampled (c.f. Table 2.1). While some of these re-
searchers have applied mitigations, such as downsampling, to reduce the
effect of spatial subsampling (e.g. MSR [13]), others rely solely on demo-
saicing performed by an often unknown ISP.

Commonly used data-sets can be categorized as follows:

24.1 Down-sampled RGB images from various cameras

This category contains some of the most commonly used data-sets for both
training and testing demasicing problems. It includes Flickr500, DIV2K,
Flickr2K and WED. The images in these data-sets were obtained by scrap-
ing the internet for various suitable images. After scraping the images
they are filtered by licence, resolution, diversity etc. The advantages of
such method are vast - the use of existing images from the internet saves
the task of acquiring images from scratch and therefor can contain a larger,
and more diverse data-set. Surprisingly, in practice, most these data-sets
are relatively small, with the largest one being WED, containing 5K im-

!While camera film is indeed spatially sub-sampled due to film “grain” (i.e. small light
sensitive particles which chemically record the itensity of light in different wavelengths),
this subsampling is negligible when considering the scanning resolution used to digitize
the film.
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ages.

While there are some advantages, the use of such data-sets holds many
problems - the main one being that the images have already been pro-
cessed by a full ISP (Image Signal Processors) pipeline. They have al-
ready been demosaiced, denoised, color corrected etc. Additionally, the
processes and camera information are completely untraceable to us since
they were taken on different, unknown cameras. The images are then
down-sampled in ordered to obtain ground truth for the RGB channels,
resulting in further degradation of the image resolution.

The use of multiple unknown cameras as a source of ground truth is likely
to create multiple biases in the ground truth data. Different cameras may
have different CFAs (c.f. Section 3.3, Figures 3.1, 3.2), different ISP settings
(e.g. color tuning, tone mapping, sharpening, etc.), and other differences
which affect the resulting images. Images collected from online sources
may have even undergone post-capture editing and adjustments which
could create additional biases. Arguably, the inclusion of images from
multiple sources may somewhat mitigate individual biases, but detailed
information on the progeny of each image it is quite difficult to assess the
extent of such biases. Furthermore, the test or validation image subset of
such a data-set may contain a different distribution of image sources than
the training subset - this could severely skew either training, evaluation,
or both.

Training datasels
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Figure 2.2: data-set used to train 25 sampled learning-based algorithms.
Note that some papers utilized more than one training data-set.
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data-set Year #Images Resolution Camera GT Generation Method
PixelShift [21] 2019 200 4K Sony ILCE-7RM3 Pixel shift
Flickr500 [24] 2018 500 640 x 480  Various (Web) Camera Demosaic
DIV2K [2] 2017 1,000 2K Various (Web) Camera Demosaic
Flickr2K [15] 2017 2,650 2K Various (Web) Camera Demosaic
Kodak[14] 1993 25 768 x 512 Film Scanned Film
WED[17] 2016 4,744 < 04MP  Various Camera Demosaic
MSR [13] 2014 557 210 x 318  Various (below) Downsampling
Canon 2014 57 210 x 318  Canon EOS 550D Downsampling
Panasonic 2014 500 210 x 318  Panasonic Lumuix DMC-LX3 Downsampling
McMaster[27] 2011 8 2310 x 1814 Film Scanned Film
MIT Moire [11] 2016 2M patches 128x128 Various (Web) Camera Demosaic
BSDS 2001 500 481 x 321 N/A N/A

Table 2.1: Overview of data-sets for training and testing demosaicing sys-
tems. Note that many of these data-sets rely on inaccurate methods for
producing fully sampled RGB images such as downsampling and the ap-
plication existing demosaicing algorithms.

! Images collected from the internet, most likely demosaiced by source
camera ISP.

24.2 Down-sampled RGB images from a specific camera

This category includes data-sets such as Kodak, MSR, and McMaster.

Similar to the previous category, the images on this data-set have already
been through the ISP process, and are down-sampled to obtain GT infor-
mation. While holding the advantage of having the full camera informa-
tion, this data-sets are small, ranging from 25 to 500 images, and, as in all
the other data-sets, are camera specific, resulting in different distribution
between the training data-set and the final input.

2.4.3 Full data from a specific camera

The PixelShift200 data-set was introduced trying to solve some of the prob-
lems mentioned above. The pixelshift200 data-set contains 200 high-quality
4K resolution full color sampled real-world pairs of raw images and color
ones. This data-set was obtained using the pixel shift technique, in which
the same frame is taken several times, each time moving the camera sen-
sor in precisely one pixel, allowing each pixel in the image to have the full
information of all three channels - R, G, B. The images were collected using
the Sony ILCE-7RM3 digital camera. This data-set, in many ways, offers
a great improvement over the previous - these images have the full color
information, have not yet been processed and were not down-sampled, al-
lowing for high-resolution images and fewer artifacts. Another advantage
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it holds over most of the commonly used data-sets is the camera used for
obtaining the images is known. Despite these very prominent improve-
ments, this data-set is still posing a lot of downsides - it contains a very
small amount of images, only 200, and it is camera specific.

While data-sets without spatial sub-sampling have obvious advantages, a
camera-specific data-set cannot be easily used to train demosaicing sys-
tems for different cameras. Given the rate of innovation in the image sen-
sor market, it is quite unreasonable to collect such a data-set for each new
camera system. The next section intends to demonstrate that it is critical to
train the demosaicing network on a the same camera from which the mo-
saic images are received, and suggest a method to do so without repeated,
laborious, data collection efforts.



3 Framework for Spectrally Aware
Demosaicing

While the issue of spatial sub-sampling has often been addressed in pre-
vious works, it would seem that no significant attempt has been made to
tackle the issue of camera spectral responses, and the effect it might have
on both training and inference. It has been long established that cameras
may differ significantly in their spectral response, and that this difference
can affect their output [12]. One could then surmise that any machine-
learning-based demosaicing system could suffer degraded performance
in the response function of the camera(s) used to generate training data
is significantly different from the camera response function of the camera
used for inference.

In this section, a framework and data-set for spectrally aware demosaic-
ing is presented. This framework facilitates the automatic creation of a
“camera-native” (i.e. which matches the spectral response of the target
camera) data-set for training CNNs or other machine learning systems for
demosaicing. The framework consists of: a hyperspectral data-set which
provides the ground spectrally adaptable ground truth information, soft-
ware which provides the means to adapt the data-set to the response func-
tion of any camera, and a methodology for training and evaluating demo-
saicing algorithms.

3.1 Hyperspectral Source data-set

In contrast to conventional RGB cameras, Hyperspectral Imaging Systems
(HISs) can record the amount of light reflected /emitted from a scene over
a large number of narrow wavelength bands, often over 10s or 100s of
bands. Traditional HISs employ either spatial or spectral scanning to avoid

11
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spatial or spectral sub-sampling at the expense of long acquisitions time,
often 10s of seconds or minutes. Hyperspectral images are ideal candi-
dates for training demosaicing systems, as they are fully spatially sam-
pled, and spectrally over-sampled when compared to RGB images. This
section will describe how the spectral over-sampling of hyperspectral im-
ages can be utilized to easily create camera-specific training data for de-
mosaicing algorithms.

While HISs have been common for over a half a century, they have most
commonly been used in remote sensing, agriculture, geology, astronomy,
earth sciences (cf. [6]), and others [4]. Interest in hyperspectral images of
natural scenes has only recently began to grow, with early data-sets includ-
ing less than a hundred images [8]. Table 3.1 details notable data-sets of
natural hyperspectral images and their scope. With the increasing avail-
ability and scope of natural hyperspectral image data-sets, they have now
become a viable option for training demosaicing algorithms.

Dataset Year #Images Spectral Resolution Spatial Resolution
CAVE [26] 2010 32 31 Bands 512x512
Chakrabarti [8] 2011 50 31 Bands 2048x2048
TokyoTech [19] 2015 30 31 Bands 1392x1040
ICVL [4] 2016 201 519 Bands 1392x1300
TT59 2018 201 59 Bands 2048x2048
Hytexila 2018 112 186 Bands 1024x1024
BGU HS 2018 256 31 Bands 1392x1300
ARAD 2020 510 31 Bands 480x512
ARAD 1K [5,6] 2022 1000 31 Bands 480x512

Table 3.1: Notable data-sets of natural hyperspectral images.

The “ARAD 1K” hyperspectral data-set [5, 6] contains 1,000 natural hy-
perspectral images. The data-set was collected using Specim IQ mobile
hyperspectral camera, allowing for both indoors and outdoors scenes and
a wide and diverse data-set. The images collected are RAW 480 x 512px
with 31 spectral bands in the 400-700nm range. The images provided are
fully spatially sampled and can be used to produce RGB mosaic images
for any known camera response function. The data-set also easily lends
itself to various augmentations, for example: scene location relative to the
virtual camera mosaic can be perturbed, generating x4 images per scene.
The following section will present a training framework which adapts the
ARAD 1K data-set to become a flexible, camera-specific training/testing
data-set for demosaicing algorithms.
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3.2 Training Framework

The data-set can be found at: https://github.com/boazarad/ARAD_
1K The model used to training and evaluating the data-sets is: TENet [21].
For the sake of keeping the experiment as noise free as possible, the model
was run as-is with no hyper parameter tuning or other interference.

3.3 Experimental Evaluation

To demonstrate the benefits of spectrally aware demosiaicing, two train-
ing/testing data-sets for RGB demosaicing were created from the ARAD
1K spectral data-set:

1. Data-set simulating the spectral response of Camera A: a Canon 1D
Mark III

2. Data-set simulating the spectral response of Camera B: a Point Grey
Grasshopper 50S5C.

Figure 3.1 depicts the spectral response function for each camera. Using
the tools described in Section 3.2, a set of train/test/validation mosaic im-
ages were generated from the ARAD_IK spectral image data set. The re-
sulting camera specific “RAW” mosaic image were used to train a TENet
CNN-based demosaicing system. The results of training on camera-native
and non-native data-sets are reported in the following sections.

3.3.1 Camera-Native Demosaicing

Point Grey Grasshopper 50S5C

Training the TENet CNN on simulated Point Grey Grasshopper 50S5C
“RAW” mosaic images achieved a PSNR of 43.96 over the corresponding
Point Grey test set. Demosacied imaged show overall high image quality
(c.f. Figure 3.3.B) and no noticeable artifacts (c.f. Figure 3.5.B).

Canon 1D Mark I1I

Training the TENet CNN on simulated Canon 1D Mark III “RAW” mo-
saic images achieved a PSNR of 30.17 over the corresponding Canon test


https://github.com/boazarad/ARAD_1K
https://github.com/boazarad/ARAD_1K
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set. While both the architechture and training procudure were identical
to those used in the Point Grey experiment, the trained TENet model pro-
duced images with periodic mosaic artifacts (c.f. Figure 3.6.B) which has a
noticable effect on overall image quality (c.f. Figure 3.4.B). Future work is
required to explore the significant performance gap of TENet over differ-
ent camera types.

3.3.2 Non-Native Demosaicing

Point Grey Grasshopper 50S5C

Training the TENet CNN on simulated Canon 1D Mark III “RAW” mosaic
images achieved a PSNR of 27.11 over the Point Grey Grasshopper 50S5C
test set. While degraded in comparison to the camera-native demosaicing
setting, overall image quality remains high (c.f. Figure 3.3.C) demosaicing
artifacts are not clearly visible (c.f. Figure 3.5.C).

Canon 1D Mark III

Training the TENet CNN on simulated Point Grey Grasshopper 50S5C
“RAW” mosaic images achieved a PSNR of 40.3 over the over the Canon
1D Mark III test set. Similarly to the camera-native experiment periodic
mosaic artifacts are visible in the results (c.f. Figure 3.6.C) and overall im-
age quality is degraded even further (c.f. Figure 3.4.C)

3.3.3 Result Comparison

As evident by the results described in the previous section, the camera
response function used to generate training data has a crucial impact on
both overall performance, as well as performance over a camera-native
or non-native test set. Table 3.2 details the results over each test set as a
function of the training data used.

Training data-set \Testing data-set 1D Mark III Grasshopper 50S5C
1D Mark III 30.17 27.11
Grasshopper 50S5C 40.3 43.96

Table 3.2: Performance of deep demosaicing algorithm in PSNR as a func-
tion of camera response function of train and test images.
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Figure 3.1: Response function of the Canon 1D Mark III (a), the Point Grey
Grasshopper 50S5C (b), and both response functions overlaid for compar-
ison (c) where the Canon 1D Mark III is represented by dashed line, and
the Point Grey Grasshopper 50S5C represented by a dotted line. Note the
marked differences between camera response functions.
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Figure 3.2: Response function of the Canon 1D Mark III (dashed) com-
pared to the the Canon 1D Mark II (dotted). Despite being successive
cameras in the same product line, the camera sensors’ response functions
show marked differences.
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Train Data — Test Data Img 6

A. Ground Truth

Canon — Point Grey

420

Point Grey — Point Grey

Figure 3.3: Demosaicing results compared to ground truth for the Point
Grey Grasshopper 50S5C camera.
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Train Data — Test Data

A. Ground Truth

B. Canon — Canon

C. Point Grey — Canon

Figure 3.4: Demosaicing results compared to ground truth for the Canon
1D Mark III camera.
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Train Data — Test Data Img 6

Figure 3.5: Detail of demosaicing results compared to ground truth for the
Point Grey Grasshopper 50S5C camera.
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C. Point Grey — Point Grey
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Train Data — Test Data Img 6

Figure 3.6: Detail of demosaicing results compared to ground truth for the
Canon 1D Mark III camera.

Img 47

A. Ground Truth

B. Canon — Canon

C. Point Grey — Canon



4 Discussion

The use of spectrally aware demosaicing has clear benefits as demostrated
in section 3.3. To date, applying these principals in practice would require
a dedicated collection effort for each target camera. Given the rate of in-
novation in the image sensor and optics market, this would no doubt be
impractical if not infeasible. However, the increasing availability of nat-
ural hyperspectral images, combined with the methodology presented in
section 3.2, provide the opportunity to easily and efficiently create a large-
scale, camera-native, training data-set for any current or future camera.

The demosaicing data-set presented here is larger than any other widely-
used demosaicing data-set which does not rely on demosaicing/downsampling
for ground truth generation, and novel in it’s adaptability to an unlimited
amount of target cameras. As hyperspectral imaging hardware and soft-
ware improve, the methodology presented here could be applied to even
larger data-sets of natural hyperspectral images, facilitating the training of
increasingly complex machine learning systems.

20
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