I'NTINNE
”'G-J'J'N"m

The Academic College of Tel Aviv-Yaffo

The Faculty of the School of Computer Science

Exploring Multimodal Large Language Models for
High-Quality Image-to-SVG Conversion

November 2025

Thesis submitted in partial fulfilment of the requirements for the M.Sc. degree in the School of
Computer Science of the Academic College of Tel Aviv-Yaffo

By

Shachar Levy

The research work for the thesis has been carried out under
the supervision of

Dr. Sarel Cohen

Contents

N 011 3 o1 P 2
ACKNOWIEAZIMENLS......cuiiiiiiiiieiiecie ettt ettt et e s e sabe e s e enseennes 3
INETOAUCTION ..ottt ettt sttt et nb et sae e 4
Related WOTK ..ottt e 5-6
1. Attempts at Generating SVG Images that Did Not Workooooai 6
OUE METhOQ ...ttt e e e e e e ns 8-14
1. Creating an Initial Small Datasetccceevierieiiiiieiieieeeece et 8
2. Scaling Up to Large Dataset (10K SAmMPIES)ccovvveeiiieriiiieiiieeiieeeiee e eevee e 9
2.1 Stable Diffusion Fine-Tuning Using DreamBoothccccoeeieriiiiiiniennn. 10
2.2 The inference process of Stable Diffusioncccceeeviiieiiiiiciiicieeee e 11
3. Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples 14
Fine-Tuning LLaVA for Image-to-SVG Generationccceeevuveeeciieencieeenveeeereeenne 15-17
1. Dataset SEIECTION ...cc.eeuiiriiiiiiiesiieteee ettt ettt st e e 15
2. LLAVA ATCRITECTUIEoeeiviieeiieeciieeciie ettt e e tee e aee e st e e sebe e e saaeeesaseeennneas 15
3. Training PrNCIPIES ...c.eevvieiieiiieiieeie ettt ettt et eebeeseneennees 15
4. Instruction-Tuned PrOMPLScc.ceeiuiiiiiiiiiiieecceeeeee e e 16
EXPEITMENLS ...eoiiiiiieiiiieiie ettt ettt sttt ettt e st e eteesaaeenbeessaeenseessaeenseensnesnseens 17-21
1. Qualitative Evaluationccooiiiiiiiiiii et 17
2. Quantitative EvValuationccccoiiiiiiiiiiiiicciec e 18
Conclusion and FUture WOTKcccuiiiiiiiiiiicciccee ettt e e s 22

RETEIEIICES et e e e e e e e e e e e e e e eans 23-25

Abstract

Scalable Vector Graphics (SVGs) are essential for modern digital design due to their resolution
independence and editability, however, automatically converting complex raster images into
high-quality vector representations remains a significant challenge. Existing state-of-the-art
multimodal models, such as GPT-4 [13] and Claude [14], often struggle to produce structurally
accurate SVGs, resulting in abstract or distorted outputs. This thesis explores the potential of
fine-tuning Vision Language Models (VLMs) to bridge this gap and generate high-fidelity SVGs
from raster inputs.

To achieve this, we developed a comprehensive pipeline for generating high-quality vector
training data. We constructed a massive dataset scaling from a curated set of 2.5k examples to
approximately 1.8 million triplets of textual descriptions, raster images, and their corresponding
SVG files. This pipeline leveraged several generative models and algorithms, including
DALL-E, Stable Diffusion fine-tuned with DreamBooth [21], and Flux [22] for image
generation, alongside Potrace [11] for converting raster images into SVG format. We also
employed advanced techniques such as "offset noise" to ensure uniform white backgrounds and
GPT-4 based caption simplification to create clean, vector-friendly silhouettes suitable for
training.

For fine-tuning the VLM, we adapted the LLaVA [23] architecture using Low-Rank Adaptation
(LoRA) [25] and gradient accumulation to handle memory constraints. Fine-tuning on our
generated Flux dataset faced challenges due to SVG sequences frequently exceeding the model’s
context window. However, the OmniSVG paper [24] was published during the course of our
work, presenting a unified approach for SVG generation. Utilizing the icon subset from the
OmniSVG dataset, we successfully fine-tuned the model. Quantitative evaluation demonstrated
that the fine-tuned model achieved substantially higher semantic alignment and pixel-level
fidelity compared to the base model (the detailed metrics and numerical results are described in
the experiments section).

Preliminary results of our work were presented in a poster at the 18th ACM International
Systems and Storage Conference (SYSTOR 2025) [27].

Acknowledgments

I would like to express my sincere gratitude to everyone who supported and guided me
throughout this research.

First, I am very grateful to my supervisor, Dr. Sarel Cohen, for guiding me throughout the
project, answering all my questions - even on weekends - and introducing me to helpful
colleagues.

I would also like to thank Ohad Rubin, PhD student at Tel Aviv University and my co-supervisor,
for generously sharing his expertise, meeting with us in his free time, and patiently answering
our questions.

My gratitude extends to Rania Briq, PhD student, for her valuable advice in computer vision and
for taking the time to meet with us.

Finally, I would like to thank Prof. Ohad Fried for sharing his expertise in computer vision and
providing helpful guidance.

1. Introduction

The purpose of this research is to evaluate whether existing pretrained multimodal language
models (LMs) are capable of generating high-quality Scalable Vector Graphics (SVGs) given
input images. SVG is a widely used vector format for high-quality, scalable image
representation, but the challenge of automatically converting complex raster images into SVGs
remains a major hurdle. The ability to automate this conversion with state-of-the-art multimodal
models would have wide applications in web design, digital art, and other visual mediums that
require high-quality vector images.

Pretrained multimodal LMs, such as PaliGemma [3], Pixtral [5], Emu3 [6], Llama 3.2 [7], and
Llava 1.5 [23], have demonstrated capabilities in text-image understanding and generation.
However, the potential of these models in vector-based graphic generation has not been fully
explored. This research aims to fine-tune Llava 1.5 [23] and similar models to evaluate their
ability to generate SVGs directly or facilitate the conversion process.

To support fine-tuning of vision-language models, an initial dataset of 2.5k high-quality tuples -
each consisting of a raster image, its corresponding SVG representation, and a detailed text
description - was created. This dataset served as the foundation for scaling to a much larger
collection. Although the original target was 100k tuples, the dataset was ultimately expanded to
1.8 million high-quality tuples.

Motivation: Current Image-To-SVG State-of-The-Art Using ChatGPT and Claude

As you can see in Figure 1, the current state of the art in image-to-SVG in both ChatGPT [13]
and Claude [14] is not good, resulting in very abstract, even absurd looking SVG images. This
gives motivation to our work, as there seems to be a large gap for improvement.

SVG results for GPT and Claude

Source o~
image

Chat-GPT

= T

Claude

Figure 1: Current State-Of-The-Art using ChatGPT and Claude (raster image to SVG)

2. Related Work

Multimodal models like StarVector [1] have made notable advancements in image-to-SVG
conversion. StarVector integrates a CLIP image encoder with StarCoder, a code generation
model, to convert images into visual tokens and generate SVG code through next-token
prediction. StarVector, trained on the SVG-Stack dataset consisting of over 2 million real-world
SVG examples (see Figure 3), is designed to capture the nuances of SVG generation. However,
its reliance on simplified SVG datasets can restrict its ability to produce highly detailed or
intricate designs. Additionally, the tokenization limitations within its architecture may affect
performance when handling more complex image representations.

Input Images 1o Vectorize Generated SVG Code Output Vectorizatlion
-l) —— ,
o L - StarVector -
- Maltimodal Codel LM —>
r@\ & ‘[3)] l % CLIP+ SarCoder | [.. Q g &] i {9"}
®Pwe /] — ®Q‘Qrw.@

Figure 2: StarVector pipeline (taken from StarVector paper [1])

In contrast, our research aims to advance SVG generation by leveraging a high-resolution SVG
dataset that we specifically curated. This dataset contains intricate examples, allowing a more
detailed assessment of SVG quality (Figure 6 shows examples from our initial small dataset). By
fine-tuning a multimodal model on this data, we aim to improve its ability to generate complex,
high-quality SVGs, surpassing models such as GPT-4V and Claude 3, while addressing
limitations of traditional SVG generation methods and API-based approaches.

G'll“m:rl-,nd StarVector VTracer GPT-4-V Ground StarVector VTracer GPT-4-V

®O® D ;IIEJI-
A& TT00

“ ebebed

Figure 3: Dataset examples used in StarVector paper and comparison to VTracer [20] and GPT4-v [13]
(taken from StarVector paper [1])

Q

During dataset creation, we ensured that images were sufficiently complex to reflect realistic
scenarios, rendered at appropriate resolution, and converted into SVGs that preserved key
geometric and structural details. We initially constrained SVG descriptions to a maximum of 8k
tokens to fit large language models, later reducing this limit to 4k tokens for practical training.
Converting raster images to SVGs is a critical step in this process. Prior work - including
StrokeNUWA [2], StarVector [1], and research on SVG compression [10] - highlighted the
benefits of vectorization for compact and high-quality representations, but these approaches
often struggled to consistently produce SVGs suitable for effective fine-tuning.

During the course of our work, the paper OmniSVG [24] was published, presenting a unified
approach for multimodal SVG generation, including Text-to-SVG, Image-to-SVG, and
character-reference SVG tasks. OmniSVG discretizes SVG commands and coordinates into
tokens, effectively separating the structural logic of vector graphics (e.g., commands and
hierarchy) from low-level geometric details such as exact coordinates. This strategy allows
vision-language models to better capture the underlying structure of SVGs rather than
memorizing pixel-level or coordinate-specific information, providing valuable guidance as we
approach the fine-tuning stage of our multimodal model.

2.1 Attempts at Generating SVG Images that Did Not Work

During the development of the SVG image generation pipeline, several methodologies were
explored to improve the quality and structural precision of the resulting vector graphics. One of
the early attempts relied on a multi-step process that combined image resizing, edge detection,
clustering, and Bezier curve fitting. The workflow began by resizing each raster image to a
consistent width (default 5000px) while preserving its aspect ratio. This normalization step
ensured uniform behavior in downstream edge-detection operations.

The resized image was then prepared for edge extraction by converting it to grayscale and
applying a series of visual adjustments, including brightness, saturation, and contrast
enhancement, as well as hue-shifting and sepia filtering when needed. Edge detection was
performed using the Canny algorithm, producing a binary edge map where detected boundaries
appeared as white contours on a black background. This representation served as the input for
subsequent structural analysis.

To group the detected edge points into meaningful shapes, the DBSCAN clustering algorithm [8]
was used. DBSCAN was chosen due to its ability to identify arbitrarily shaped clusters and
handle noise effectively - properties that are particularly useful when dealing with natural
images. For each cluster, Bezier curve fitting was applied to approximate the contours with
smooth mathematical curves. These curves were then converted into SVG path commands,
forming the final vector representation. Example outputs of this approach are provided in

Figure-4. Despite producing visually interpretable results, the method introduced inaccuracies
and structural artifacts, making it unsuitable for building a high-quality dataset at scale.

In another approach, Pillow was used for image manipulation alongside edge-detection methods
from scikit-image to generate a sketch-like representation of the raster images. In this pipeline,
the Sobel filter was applied to extract intensity gradients, producing a grayscale edge image that
resembled a hand-drawn sketch. This sketch was then passed to Potrace [11], a vectorization tool
that converts bitmap outlines into smooth Bézier paths. While Potrace is effective for simple,
high-contrast silhouettes, its output in this context lacked the structural fidelity required for
detailed images. The resulting SVGs often contained oversimplified contours, missing internal
boundaries, and irregular path shapes. Consequently, the quality produced by this method was
insufficient for building a high-quality vector dataset.

eps=4.00 eps= 4.67 eps= 5.11 eps=6.00
number of GPT-4 number of GPT-4 number of GPT-4 tokens: number of GPT-4 tokens:
tokens: 19280 tokens: 16178 1936 1936

Figure 4: The eps parameter in DBSCAN controls the maximum distance between two samples for them
to be considered part of the same cluster.

3. Our Method

We first created a small, high-quality dataset of 2.5k examples, where each example included a
raster image, its matching SVG version, and a clear text description. This initial set helped define
the structure and quality we wanted and served as the foundation for creating a larger dataset of
10k examples, which was ultimately scaled up to 1.8 million high quality image - SVG - text
tuples.

3.1 Creating an Initial Small Dataset

We developed a pipeline integrating generative methods using OpenAl’s DALL-E API for image
creation. Once a JPG image is generated, we convert it to SVG using the Potrace algorithm [11],
which detects image edges and fits smooth curves, ensuring that both the structural integrity and
descriptive capacity of the image are preserved. This approach allows us to produce diverse and
complex images that can be effectively converted into scalable vector graphics. For generating
the textual description of the images, we used GPT-4 Turbo, enhancing the dataset with rich,
contextually accurate descriptions. By combining DALL-E for image generation with Potrace for
SVG conversion, we have built a robust, high-quality SVG dataset that supports our project's
goals. The process is detailed in Figure 5.

SVG Generator Process

B e -
Inject oblect NAME 10y gy o cuest for generating imar
) prompt

A

Figure 5: Our pipeline for generating an initial dataset of 2,500 high-quality SVG images. More precisely,
we generate tuples of (text, raster image, SVQ), for every instance.

Here we present several examples of our pipeline:

5,637 tokens 2,222 tokens 6,420 tokens 4,886 tokens

L 4

1,259 tokens 6,761 tokens

1,753 tokens

1,128 tokens

Figure 6. Several SVGs generated by our pipeline from Figure 3. All of these SVG images contain at
most 8K tokens (after tokenization). As you can see, these images are of much higher quality than
previous attempts, and also fit into a 8K-context of an LLM. The prompt used for generating the raster
images before converting to SVG is: “A black silhouette of a {object} with well-defined main features
that clearly outline the subject's overall shape. The silhouette shows high contrast between the sharp main
contours and the bright white background. The silhouette is very simple and lacks sharp edges and
intricate details." where the objects in the figure are {zebra, motorcycle, ukulele, crown, elephant,
bicycles, chess, and scissors} correspondingly.

3.2 Scaling Up to Large Dataset (10k samples)

To grow our dataset beyond the first 2.5k examples, we fine-tuned a Stable Diffusion model
using DreamBooth [21]. We trained it on our small curated set of raster images, SVGs, and text
descriptions so the model would learn the style we needed. Our goal was to generate raster
images that convert easily into clean SVGs, so we focused on producing images with simple
shapes, minimal details, and a plain white background. We used prompt engineering to push the
model toward this minimal, high-contrast style.

The next stage scaled this workflow up further - eventually reaching 1.8 million samples - using
a stronger model called Flux [22].

3.2.1 Stable Diffusion Fine-Tuning Using DreamBooth

Stable Diffusion [12] is a text-to-image generative model based on the diffusion framework,
where an image is created by gradually transforming random noise into a coherent visual output.
The model learns this transformation by reversing a noise-adding process: it takes a noisy latent
representation and denoises it step by step, guided by text embeddings that describe the desired
scene.

The architecture contains several key components:

e Latent Space Representation:
Rather than generating images directly in pixel space, Stable Diffusion works in a
compressed latent space using a Variational Autoencoder (VAE). This significantly
reduces memory and computation cost while preserving visual detail.

e Diffusion Process:
During training, the model observes a forward diffusion process that progressively adds
noise to the latent image. It then learns the reverse process - removing noise over multiple
steps to recover the image described by the prompt.

e U-Net Backbone:
The denoising network is a U-Net, chosen for its ability to capture multi-scale features. It
receives the noisy latent, a timestep, and the text embedding, and outputs a cleaner latent
representation.

e Text Conditioning:
Text prompts are encoded using a transformer-based text encoder. These embeddings
guide the U-Net so the final image aligns semantically with the prompt.

To adapt Stable Diffusion to our specific style - minimalist silhouettes, strong foreground -
background separation, and fully white backgrounds - we finetuned the model using
DreamBooth [21]. DreamBooth enables personalization: the model can internalize the visual
characteristics of a small training set and reproduce them consistently during generation. In our
case, this allowed Stable Diffusion to learn the clean icon-like structure required for efficient
SVG vectorization.

However, as noted in Guttenberg’s blog [26], diffusion models naturally gravitate toward
mid-range brightness values. Their noise distribution makes it difficult to generate extremely
bright or extremely dark regions, which causes problems when producing images with uniform
white backgrounds - an essential requirement for low token SVGs.

10

Before applying any correction, the standard noise sampled during training is:

noise = torch.randn_like(latents)

To overcome this brightness limitation, we adopted offset noise, which shifts the noise
distribution by adding a low-frequency bias. This encourages the model to produce brighter
images and maintain large areas of uniform white:

noise = torch.randn_like(latents) + 0.1 * torch.randn(latents.shape[0],
latents.shape[1], 1, 1)

3.2.2 The inference process of Stable Diffusion

To expand our dataset from 2.5K to 10K high quality triplets, we ran a large-scale inference
process using a Stable Diffusion model fine-tuned with DreamBoot [21]. To create diverse input
prompts, we drew inspiration from two large captioning datasets: the COCO dataset, which
contains everyday images paired with short human-written captions, and the Text-to-Image-2M
dataset, which contains millions of image-text pairs collected for training generative models. We
used only the textual descriptions from these datasets, mixing object and scene phrases to
produce thousands of unique prompt candidates. However, many of these captions were too long
or too complex - often filled with adjectives, background clutter, or scene details that made it
difficult for Stable Diffusion to generate clean, simple silhouettes.

To solve this, we used GPT-4 Turbo with a prompt-engineering approach. We provided the
model with several examples showing how to turn a complex caption into a short, abstract,
silhouette-friendly description. The model learned to simplify captions consistently and returned
“NO” when a caption was unsuitable.

11

The exact prompt format we used was:

| have a caption and | want to make it slightly simpler (especially the background and colors) and
more spacific, and turn it into a caption describing a minimalist abstract silhouatte of the samea
subject.

If the caption is not apprograte to be converled, respond with "NO".

For example:

“A dog rolling in the snow at sunsat™ —

“An abstract minimalist silhouette of a dog rolling in the snow, clean outlines, uniform white
background.”

“An armechair that looks like an apple” —
“An anmchair that looks like an apple. minimalist abstract silhouette, clean outlines, uniform white
background.”

“pink photo of Tokya" —
"Buildings in Tokyo, minimalist abstract silhouette, clean outlines, uniform white background.”

“Anti-fracking protest rocks NY governor's state of the state address™ —
“A group of people protesting in front of a building, minimalist abstract silhouette, clean outlines,
uniform white background,”

“si peter's square: St Peters Sguara in Rome ltaly" —
"M city square with a recognizable landmark, minimalist abstract silhouette, clean outlines, uniform
white background

“Mickeladeon Paw Patrol "Calling All Pups’ Soft Potty Seat” —
“NOT

Now process the following caption: "{context}”
Format the output as:
<simplifisd=

After simplification, each processed caption was wrapped in a consistent style template to match
the aesthetic learned during DreamBooth training-specifically:

“a black-and-white silhouette of {processed_line} on a solid white background.”

We then fed these prompts into our fine-tuned Stable Diffusion model. Because the model had
learned minimalist shapes, strong foreground-background separation, and clean white
backgrounds, it produced images that were generally easy to convert into SVGs. Each generated
raster image was passed through our Potrace-based vectorization pipeline, after which we
applied two filtering rules: (1) we removed SVGs that exceeded 4,000 tokens to maintain
compactness, and (2) we kept only samples with sufficiently high CLIP similarity to their
prompts. Images that passed both tests were used to improve the fine-tuning. The iterative
process of the fine-tuning is shown in Figure 7.

12

Fine-tune
stable diffusion —inference—s

Initial dataset

Filter by number of -
tokens (<= 4k) and
CLIP similarity to the

rejected——»| Negative

2.5k triplets (dreambooth) grompt Samples
— _ A
accepted
=
- Positive
Samples
~— -

Figure 7: Iterative Fine-Tuning Process of SD Dreambooth

The final results were mixed. Many images were clean and structurally correct, converting
smoothly into SVGs. (See Figure 8 — Good Inference Examples.) Others contained broken
silhouettes, missing structure, or unusual artifacts. (See Figure 9 — Problematic Inference
Examples.) These limitations suggested that DreamBooth-tuned Stable Diffusion was not strong

enough for reliable large-scale silhouette generation,
model (Flux) for scaling from 10K to 1.8M samples.

t1 7
L5

(a) A cat lies near a laptop. (b) A living room with a fireplace
and chairs.

N Wy

(c) A bird sitting in a tree. (d) A boy wearing headphones
looking at a computer.

Figure 8: Good Inference Examples of
finetuned SD Dreambooth

motivating our transition to a more capable

) .
e N S

@ m/y
(a) two ladies with glasses andan (b) a man standing in the snow
umbrella in the rain. ready to ski.

T
=

(c) two kids on a bed. (d) a girl holding a tennis racquet

next to a woman.

Figure 9: Problematic Inference Examples
of finetuned SD Dreambooth

13

3.3 Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples

After building the initial 10K dataset with Stable Diffusion, we moved to a stronger model Flux
[22], created by Black Forest Labs to scale our dataset to more than a million examples. Flux is a
modern diffusion model built with a hybrid multimodal transformer architecture and scaled to
12B parameters, making it far more capable than Stable Diffusion for producing structured,
clean, and consistent images.

We fine-tuned Flux using a lightweight LoRA [25] (weight 0.1). The LoRA did not change the
style dramatically - it only encouraged slightly simpler shapes and more stable outlines. The real
performance improvement came from two ingredients we kept from the SD stage: (1) simplified
captions, and (2) a consistent silhouette-style wrapper prompt.

For captioning, we reused the same simplified COCO and text-to-image-2M descriptions
simplified by GPT-4 Turbo. These short captions helped Flux focus on the core object without
adding unnecessary textures or backgrounds. We then wrapped every simplified caption inside a
consistent SVG-friendly template:

"minimal {processed line} with clean outlines, flat fills, high contrast, scalable vector-style graphic.”

We also used a negative prompt to prevent the model from adding unwanted details, telling it to
avoid: photorealistic, noise, texture, watercolor, gradients, film grain, shading.

Using this setup, we generated approximately 1.8 million raster images with the FLUX.1-schnell
model. Every image was then processed through Potrace [11], which produced SVGs with clean
structure and controlled token counts. Only images whose SVGs met our quality constraints
(e.g., low token count, clean silhouettes, proper shape structure) were kept.

The final result is a large-scale dataset of about 1.8 million triplets - caption, raster image, and
SVG. To our knowledge, this is one of the largest and most carefully curated datasets designed
specifically for vector friendly image generation, SVG reasoning, and image-to-vector learning
at scale.

(a) a boy wearing headphones (b)a woman marking a cake with (c) a girl holding a cat and smil- (d) a kitchen with a sink and
looking at a computer. a knife. ing. cooking appliances.

Figure 10: Examples of inference images generated by the fine-tuned FLUX model

14

4. Fine-Tuning LLaVA for Image-to-SVG Generation

4.1 Dataset Selection

We initially considered using our large-scale FLUX [22] dataset, which contains 1.8M triplets of
raster images, captions, and SVGs. However, many of the converted SVG sequences were longer
than 4,000 tokens, exceeding the context window of the LLaVA [23] model we used. This caused
truncation, preventing the model from seeing the full SVG and making fine-tuning ineffective.
To address this, we used the OmniSVG [24] dataset, which contains illustrations and icons. We
selected the icon subset, which contains simple, compact examples with short SVG sequences
that fit within the model’s context window, allowing effective training for Image-to-SVG
generation.

4.2 LLaVA Architecture

LLaVA [23] (Large Language and Vision Assistant) is a large multimodal model that integrates
visual and textual information. It connects a pretrained vision encoder to a large language model
via a trainable multimodal fusion layer, converting image features into tokens that the language
model can process alongside text. The model is autoregressive, predicting one token at a time,
and is instruction-tuned to follow structured prompts. This architecture enables LLaVA to
generate structured outputs, such as SVG code, directly from images.

4.3 Training Principles
To adapt LLaVA-1.5-7b for Image-to-SVG generation, we employed several key strategies:

e Gradient Accumulation:
Due to limited GPU memory, we trained with a small batch size (1 sample) but
accumulated gradients over multiple steps before updating the weights. This simulates a
larger effective batch size, stabilizing training without exceeding memory limits.

e Multimodal Input with Captions:
While the core task is Image-to-SVG, including textual captions during training improves
model performance. Captions provide explicit guidance about the icon’s semantic
content, helping the model generate accurate SVGs even in ambiguous or noisy images.
In the training prompt, the image is represented by a special token that signals the model
to use visual features from the input image, and the caption is included directly in the
instruction text. This combination allows the model to align visual information with the
intended semantic meaning of the icon.
Additionally, a fraction of samples are text-only (Text-to-SVG), which helps the model
retain its instruction-following ability and prevents forgetting the Image-to-SVG task.

15

LoRA-based Model Adaptation:

Low-Rank [25] Adaptation (LoRA) was applied to the language and multimodal fusion
layers while keeping the vision encoder frozen. This focuses training on the cross-modal
mapping and SVG sequence generation, reducing computational cost.

Data Collation and Loss Masking:

Sequences were padded within each batch, and loss was computed only on the generated
SVG tokens. Prompt tokens were masked to prevent the model from learning the
instruction text as part of the output.

Loss Function: We use autoregressive next-token prediction with cross-entropy loss,
computed only on the SVG output tokens. Prompt and padding tokens are masked so the
model learns to generate the SVG sequence rather than copying the instruction text.

4.4 Instruction-Tuned Prompts

The model was trained using structured prompts for the Image-to-SVG task:

Instruction:
Recreate this icon as a compact, valid SVG based on the image. Use
viewBox="0 0 256 256"; prefer <path=>, <rect>, <circle=; no external CSS.

In this prompt, the image is provided through the model’s image input token, while the caption
appears in the instruction text. This setup allows the model to generate SVG code that reflects
both the visual structure and the intended semantic meaning of the icon.

Output Stabilization: Captions provide clear semantic instructions, helping the model
generate accurate SVGs even when the input image contains noise.

Better Generalization: Textual descriptions allow the model to learn broader mappings
between high-level concepts and SVG structures, improving its ability to handle diverse
content.

Task Retention: Including text-only samples prevents the model from forgetting the core

Image-to-SVG task, ensuring robust SVG generation even when images are partially
missing or degraded.

16

Training a vision-language model (VLM) on images alone reduces the task to a direct
pixel-to-SVG mapping, making it harder for the model to capture the intended semantics and
increasing sensitivity to noise. Adding text provides an additional layer of conceptual
understanding, guiding the model toward producing SVGs that reflect the intended content more
faithfully.

Training Loss Curve

201 Raw Loss
- Smoothed Loss
18

16 A

14 -

Loss

12 A

10 A

T T T

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

Figure 11: The training loss curve of the Llava-1.5-7b

17

5. Experiments

To evaluate the performance of our Image-to-SVG generation model, we conducted both
quantitative and qualitative experiments, comparing our model against prior approaches and
assessing improvements after fine-tuning.

5.1 Qualitative Evaluation

Qualitative assessment involved visually inspecting the generated SVGs on known datasets. The
evaluation focused on preservation of image details, aesthetic appeal, and overall fidelity. Figure
12 illustrates examples of high-quality SVGs generated by our pipeline.

Source Image o

Llava output

Figure 12: Examples of image to SVG results of the finetuned Llava-1.5-7b

5.2 Quantitative Evaluation

For rigorous quantitative evaluation, we employed a combination of raster-based and
vector-based metrics, some of which were adopted from prior work on StarVector [1].

In our experiments, we evaluated every predicted SVG by comparing it to its corresponding
ground-truth SVG across a wide suite of metrics. All SVG outputs - both ground truth and model
prediction - were first rasterized at a fixed resolution to enable consistent pixel-based
measurements. For each sample, we computed classical metrics such as MSE, SSIM, PSNR, and
IoU, as well as perceptual and semantic metrics including LPIPS and CLIP similarity. In

18

addition, to capture geometric fidelity at the vector level, we computed the Chamfer Distance
directly on the SVG path coordinates. These metrics were averaged across the entire evaluation
set, providing a comprehensive quantitative view of reconstruction quality, perceptual similarity,
and vector-shape accuracy.

Metrics:

1. Mean Squared Error (MSE)
MSE measures the average squared difference between corresponding pixel intensities in

the generated image [. and the reference image [;

1n ' 2
M%::TEUJ—Q

Lower MSE indicates better reconstruction fidelity.
2. Structural Similarity Index (SSIM) [19]

SSIM, evaluates perceptual similarity by comparing luminance, contrast, and structure:

2 “x“y+c1) (Zoxy+C2)
2 2 2 2
(ux+uy+Cl)(ox+cy+CZ)

SSIM(x,y) =

o e 2 2
where W and W are the means of pixel intensities in images x and y, o and o are the
variances, ny is the covariance, and C L and C , are constants to stabilize the division.

SSIM, introduced in [19], captures perceptual similarity by comparing patterns of pixel
intensity, luminance, and contrast in the rasterized SVGs and aligns closely with human
visual perception.

3. Peak Signal-to-Noise Ratio (PSNR) [17]
PSNR quantifies pixel-level fidelity, capturing differences in intensity values: higher
PSNR indicates clearer, less noisy outputs.

4. Intersection over Union (IoU) [18]
IoU measures spatial alignment between rasterized generated SVGs and ground truth:

ANB
loU _|AUB|

where A and B are the sets of pixels in the reference and generated images. Higher IoU
reflects better shape alignment.

19

5. Learned Perceptual Image Patch Similarity (LPIPS)
LPIPS assesses perceptual similarity using deep features, providing additional insight
into visual quality beyond pixel-level metrics. Lower LPIPS indicates higher perceptual
similarity.

6. CLIP Similarity
We also compute the cosine similarity between image and SVG embeddings using CLIP,

evaluating semantic alignment between input images and generated SVGs.

7. Chamfer Distance (CD) [16]
CD is a vector-based metric that measures similarity between point sets representing the

reference and generated SVG shapes. Lower CD indicates better geometric fidelity
without rasterization

Average Quantitative Evaluation Metrics for Image-to-SVG
Generation

Metric Before Fine-Tune After Fine-Tune Improvement (%)

MSE 0.089515 0.037797 57.776%
SSIM 0.736128 0.758728 3.070%
PSNR 49.543561 59.061121 19.210%
IoU 0.029689 0.128543 332.965%
LPIPS 0.406613 0.224022 44.905%
CLIP Sim 0.868794 0.949437 9.282%
Chamfer 0.179853 0.096910 46.117%
Figure 13
Results Analysis

The table, described in Figure 13, reports the average quantitative evaluation metrics for our
Image-to-SVG generation model, both before and after fine-tuning. These metrics capture
different aspects of fidelity, from pixel-level accuracy to vector-based geometric similarity.

After fine-tuning, all metrics show substantial improvements, reflecting the model’s
enhanced ability to generate SVGs that faithfully represent the input images. In particular:

20

Mean Squared Error (MSE) decreased from 0.0895 to 0.0378, indicating a substantial
reduction in pixel-level differences between the rasterized SVGs and the original images.

Structural Similarity Index (SSIM) increased from 0.7361 to 0.7587, suggesting better
preservation of perceptual structures such as shape, contrast, and luminance in the
generated SVGs.

Peak Signal-to-Noise Ratio (PSNR) improved from 49.54 to 59.06, highlighting clearer
and more accurate reconstruction at the pixel level.

Learned Perceptual Image Patch Similarity (LPIPS) dropped from 0.4066 to 0.2240,
confirming that the generated images are perceptually closer to the originals, according to
human-aligned features.

CLIP Similarity rose from 0.8688 to 0.9494, reflecting that the semantic content of the
generated SVGs aligns more closely with the input images.

Chamfer Distance decreased from 0.1798 to 0.0969, indicating that the geometric
outlines of the vector shapes match the original shapes more precisely.

Intersection over Union (IoU) shows some improvement (0.0297 to 0.1285) compared
to prior results, but remains relatively low overall. This is expected because the dataset
primarily contains icons with very sparse and compact shapes. In such cases, even minor
spatial shifts in the generated SVGs can lead to large reductions in pixel-wise overlap,
while perceptual and geometric similarity remains high.

21

6. Conclusion and Future Work

In this work, we set out to build a large dataset of (caption, raster image, SVG) triplets for
training and evaluating future vision - language models on image-to-SVG tasks. We began with a
small curated set and expanded it through iterative generation, filtering, and refinement (using
SD dreambooth). After reaching 10K samples, we scaled up using the Flux model and ultimately
produced approximately 1.8M triplets, each converted to SVG through our vectorization
pipeline.

Looking ahead, there are additional techniques from recent research that we plan to explore. The
OmniSVG paper proposes several strategies for simplifying and normalizing SVGs so they are
easier for models to learn. For example, they use tools like picosvg to remove extra structural
elements and rewrite shapes in a cleaner form - turning what might otherwise be many line
segments into a structured command such as:

<rect x="80" y="90" width="188" height="100"/>

They also simplify SVGs into small sets of atomic path commands and remove elements like
<g> (group) and transform. Incorporating or adapting some of these ideas may help reduce noise,
unify structure, or make SVG sequences more model-friendly.

Future work will focus on evaluating these simplification and normalization methods within our
pipeline, as well as exploring iterative SVG generation - splitting complex scenes into smaller
parts instead of producing a single long sequence. We also plan to test techniques that may
reduce inference cost, such as multi-token prediction or KV-cache compression, especially
important for long SVG token sequences. As models continue to improve, there is room to
investigate stronger diffusion models or hybrid approaches to further enhance SVG quality and
token efficiency.

Overall, while we observed clear improvements as our dataset grew, the work also highlights
current limitations, such as long SVG sequences, context-window constraints, and variability
across samples. Producing SVGs directly from text or images is feasible but still challenging,
and there is substantial room for refinement. Our dataset and pipeline provide a foundation for
advancing vector-aware vision-language modeling, and we aim to continue improving both the
SVG representations and the models that learn from them.

22

References

[1] Juan A. Rodriguez et al. StarVector: Generating Scalable Vector Graphics Code from
Images. 2023. arXiv: 2312 . 11556 [cs.CV]. url: https://arxiv.org/abs/2312.11556

[2] Zecheng Tang et al. “StrokeNUWA - Tokenizing Strokes for Vector Graphic Synthesis”.
In: Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. 2024. url: https://openreview.net/forum?id=eVIx8DaG9%h

[3] Lucas Beyer et al. PaliGemma: A versatile 3B VLM for transfer. 2024. arXiv:
2407.07726 [cs.CV]. url: https://arxiv.org/abs/2407.07726

[4] Google Al (n.d.). Fine-tuning PaliGemma. Retrieved October 27, 2024, from
https://ai.google.dev/gemma/docs/paligemma/fine-tuning-paligemma

[5] Pravesh Agrawal et al. Pixtral 12B. 2024. arXiv: 2410.07073 [cs.CV]. url:
https://arxiv.org/abs/2410.07073

[6] Xinlong Wang et al. Emu3: Next-Token Prediction is All You Need. 2024. arXiv:
2409.18869 [cs.CV]. url: https://arxiv.org/abs/2409.18869

[7] Meta Al (2024). LLaMA 3.2. Retrieved October 27, 2024, from
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

[8] Martin Ester et al. “A density-based algorithm for discovering clusters in
1. large spatial databases with noise”. In: Proceedings of the Second Inter-
2. national Conference on Knowledge Discovery and Data Mining. KDD’96.
3. Portland, Oregon: AAAI Press, 1996.
4. url: https://www.dbs.ifi.Imu.de/Publikationen/Papers/KDD-96.final.frame.pd

[9] Francis Bach and Michael Jordan. “Learning Spectral Clustering”. In: Advances in
Neural Information Processing Systems (NeurIPS). Ed. by S. Thrun, L. Saul, and B.
Sch”olkopf. Vol. 16. MIT Press, 2003. url:
https://proceedings.neurips.cc/paper_files/paper/2003/file/d048631100d59b3eb688al1195
b0ae60-Paper.pdf

[10] S.R. Ginn. “On the Compression of SVG Images”. Master’s thesis. Faculty of

Science (FNWI), University of Amsterdam, 2017. url:
https://scripties.uba.uva.nl/search?id=record 25356

23

https://arxiv.org/abs/2312.11556
https://openreview.net/forum?id=eVlx8DaG9h
https://arxiv.org/abs/2407.07726
https://ai.google.dev/gemma/docs/paligemma/fine-tuning-paligemma
https://ai.google.dev/gemma/docs/paligemma/fine-tuning-paligemma
https://arxiv.org/abs/2410.07073
https://arxiv.org/abs/2409.18869
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://scripties.uba.uva.nl/search?id=record_25356

[11] Peter Selinger. “Potrace : a polygon-based tracing algorithm”. In: 2003.
1. url: https://api.semanticscholar.org/CorpusID:1419652

[12] Patrick Esser et al. Scaling Rectified Flow Transformers for High-Resolution
1. Image Synthesis. 2024. arXiv: 2403 . 03206 [cs.CV]. url:
https://arxiv.org/abs/2403.03206

[13] OpenAl et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL]. url:
https://arxiv.org/abs/2303.08774

[14] The Claude 3 Model Family: Opus, Sonnet, Haiku”. In: url:
https://api.semanticscholar.org/CorpusID:268232499

[15] Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks. 2020. arXiv: 1703.10593 [cs.CV]. url:
https://arxiv.org/abs/1703.10593

[16] Haoqgiang Fan, Hao Su, and Leonidas Guibas. A Point Set Generation Network for 3D
Object Reconstruction from a Single Image. 2016. arXiv:1612.00603 [cs.CV]. url:
https://arxiv.org/abs/1612.00603

[17] Alain Hor e and Djemel Ziou. “Image Quality Metrics: PSNR vs. SSIM”. In: 2010
20th International Conference on Pattern Recognition. 2010, pp. 2366—2369. doi:
10.1109/ICPR.2010.579. url: https://ieeexplore.ieee.org/document/5596999

[18] Hamid Rezatofighi et al. Generalized Intersection over Union: A Metric and A Loss
for Bounding Box Regression. 2019. arXiv: 1902.09630 [cs.CV]. url:
https://arxiv.org/abs/1902.09630

[19] Zhou Wang et al. “Image quality assessment: from error visibility to structural
similarity”. In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600—612. doi:
10.1109/TTP.2003.819861. url: https://ieeexplore.ieee.org/document/1284395

24

https://api.semanticscholar.org/CorpusID:1419652
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2303.08774
http://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1612.00603
https://ieeexplore.ieee.org/document/5596999
https://arxiv.org/abs/1902.09630
https://ieeexplore.ieee.org/document/1284395

[20] Yao Liu et al. Vtracer: A Deep Learning-based Tool for Vectorizing Raster Images
into Scalable Vector Graphics (SVGs). Accessed: 2024-11-09. 2024. url:
https://github.com/facebookresearch/VTracer

[21] Nataniel Ruiz et al. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for
Subject-Driven Generation. 2023. arXiv: 2208.12242 [cs.CV]. url:
https://arxiv.org/abs/2208.12242

[22] Labs, B. F., Batifol, S., Blattmann, A., Boesel, F., Consul, S., Diagne, C., ... Smith, L.
(2025). FLUX.1 Kontext: Flow matching for in-context image generation and editing in
latent space. arXiv. https://arxiv.org/abs/2506.15742

[23] Li, Jing Yang, Jie Yu, Xiyao Wang, Bin Qin, Yumeng Wang, Zizhen Yan, Ziyong
Feng, Ziwei Liu, Bo Li, and Jiankang Deng. 2025. LLaVA-OneVision-1.5: Fully Open
Framework for Democratized Multimodal Training. arXiv:2509.23661 [cs.CV]
https://arxiv.org/abs/2509.23661

[24] Yang, Y., Cheng, W., Chen, S., Zeng, X., Yin, F., Zhang, J., Wang, L., Yu, G., Ma, X.,
& Jiang, Y. (2025). OmniSVG: A Unified Scalable Vector Graphics Generation Model.
arXiv. https://arxiv.org/abs/2504.06263

[25] Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., L1, Y., Wang, S., Wang, L., & Chen, W.
(2021). LoRA: Low-Rank Adaptation of Large Language Models. arXiv.
https://arxiv.org/abs/2106.09685

[26] Nicholas Guttenberg. 2023. Diffusion Models with Offset Noise.
https://www.crosslabs.org/blog/diffusion-with-offset-noise

[27] Shachar Levy, Maayan Mashhadi, Sarel Cohen, Ohad Rubin. The 18th
ACM International Systems and Storage Conference (SYSTOR 2025).
VisVec: A Milestone Towards Compressing Images by Converting Them
to SVG using LLMs.

25

https://github.com/facebookresearch/VTracer
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2506.15742
http://cs.cv
https://arxiv.org/abs/2509.23661
https://arxiv.org/abs/2504.06263
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://www.crosslabs.org/blog/diffusion-with-offset-noise

	3.​Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples 14
	3.2.1 Stable Diffusion Fine-Tuning Using DreamBooth
	
	
	
	
	3.3 Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples
	4.1 Dataset Selection
	4.2 LLaVA Architecture
	4.3 Training Principles
	4.4 Instruction-Tuned Prompts
	5.1 Qualitative Evaluation
	​5.2 Quantitative Evaluation
	For rigorous quantitative evaluation, we employed a combination of raster-based and vector-based metrics, some of which were adopted from prior work on StarVector [1].
	In our experiments, we evaluated every predicted SVG by comparing it to its corresponding ground-truth SVG across a wide suite of metrics. All SVG outputs - both ground truth and model prediction - were first rasterized at a fixed resolution to enable consistent pixel-based measurements. For each sample, we computed classical metrics such as MSE, SSIM, PSNR, and IoU, as well as perceptual and semantic metrics including LPIPS and CLIP similarity. In addition, to capture geometric fidelity at the vector level, we computed the Chamfer Distance directly on the SVG path coordinates. These metrics were averaged across the entire evaluation set, providing a comprehensive quantitative view of reconstruction quality, perceptual similarity, and vector-shape accuracy.
	Metrics:

	Results Analysis

