
 

 

 

 

The Academic College of Tel Aviv-Yaffo 

 

The Faculty of the School of Computer Science  

 

 

 
Exploring Multimodal Large Language Models for 

High-Quality Image-to-SVG Conversion 
 

 
November 2025 

 
Thesis submitted in partial fulfilment of the requirements for the M.Sc. degree in the School of 

Computer Science of the Academic College of Tel Aviv-Yaffo  
 

By 

Shachar Levy 

 
 

 
The research work for the thesis has been carried out under 

the supervision of  
 

Dr. Sarel Cohen 
 
 
 
 
 
 
 

 



 

Contents 
 
Abstract..................................................................................................................  2  

Acknowledgments..............................................................................................................  3  

Introduction ........................................................................................................................  4 

Related Work .................................................................................................................... 5-6 

1.​ Attempts at Generating SVG Images that Did Not Work ………………………...  6 

Our Method ......................................................................................................………... 8-14 

1.​ Creating an Initial Small Dataset ............................................................................. 8 

2.​ Scaling Up to Large Dataset (10k samples) ............................................................. 9 

2.1 Stable Diffusion Fine-Tuning Using DreamBooth ........................................... 10 

2.2 The inference process of Stable Diffusion ........................................................ 11 

3.​ Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples .................. 14 

Fine-Tuning LLaVA for Image-to-SVG Generation ...................................................... 15-17 

1.​ Dataset Selection ..................................................................................................... 15 

2.​ LLaVA Architecture ................................................................................................ 15 

3.​ Training Principles .................................................................................................. 15 

4.​ Instruction-Tuned Prompts ......................................................................................16 

Experiments ................................................................................................................... 17-21 

1.​ Qualitative Evaluation ............................................................................................ 17 

2.​ Quantitative Evaluation .......................................................................................... 18 

Conclusion and Future Work .............................................................................................. 22 

References ..................................................................................................................... 23-25 

 
 
 
 

1 



 

Abstract 

Scalable Vector Graphics (SVGs) are essential for modern digital design due to their resolution 
independence and editability, however, automatically converting complex raster images into 
high-quality vector representations remains a significant challenge. Existing state-of-the-art 
multimodal models, such as GPT-4 [13] and Claude [14], often struggle to produce structurally 
accurate SVGs, resulting in abstract or distorted outputs. This thesis explores the potential of 
fine-tuning Vision Language Models (VLMs) to bridge this gap and generate high-fidelity SVGs 
from raster inputs. 

To achieve this, we developed a comprehensive pipeline for generating high-quality vector 
training data. We constructed a massive dataset scaling from a curated set of 2.5k examples to 
approximately 1.8 million triplets of textual descriptions, raster images, and their corresponding 
SVG files. This pipeline leveraged several generative models and algorithms, including 
DALL-E, Stable Diffusion fine-tuned with DreamBooth [21], and Flux [22] for image 
generation, alongside Potrace [11] for converting raster images into SVG format. We also 
employed advanced techniques such as "offset noise" to ensure uniform white backgrounds and 
GPT-4 based caption simplification to create clean, vector-friendly silhouettes suitable for 
training. 

For fine-tuning the VLM, we adapted the LLaVA [23] architecture using Low-Rank Adaptation 
(LoRA) [25] and gradient accumulation to handle memory constraints. Fine-tuning on our 
generated Flux dataset faced challenges due to SVG sequences frequently exceeding the model’s 
context window. However, the OmniSVG paper [24] was published during the course of our 
work, presenting a unified approach for SVG generation. Utilizing the icon subset from the 
OmniSVG dataset, we successfully fine-tuned the model. Quantitative evaluation demonstrated 
that the fine-tuned model achieved substantially higher semantic alignment and pixel-level 
fidelity compared to the base model (the detailed metrics and numerical results are described in 
the experiments section). 

Preliminary results of our work were presented in a poster at the 18th ACM International 
Systems and Storage Conference (SYSTOR 2025) [27]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

2 



 

Acknowledgments 
 

I would like to express my sincere gratitude to everyone who supported and guided me 
throughout this research. 

First, I am very grateful to my supervisor, Dr. Sarel Cohen, for guiding me throughout the 
project, answering all my questions - even on weekends - and introducing me to helpful 
colleagues. 

I would also like to thank Ohad Rubin, PhD student at Tel Aviv University and my co-supervisor, 
for generously sharing his expertise, meeting with us in his free time, and patiently answering 
our questions. 

My gratitude extends to Rania Briq, PhD student, for her valuable advice in computer vision and 
for taking the time to meet with us. 

Finally, I would like to thank Prof. Ohad Fried for sharing his expertise in computer vision and 
providing helpful guidance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 



 

1.​ Introduction 

The purpose of this research is to evaluate whether existing pretrained multimodal language 
models (LMs) are capable of generating high-quality Scalable Vector Graphics (SVGs) given 
input images. SVG is a widely used vector format for high-quality, scalable image 
representation, but the challenge of automatically converting complex raster images into SVGs 
remains a major hurdle. The ability to automate this conversion with state-of-the-art multimodal 
models would have wide applications in web design, digital art, and other visual mediums that 
require high-quality vector images. 

Pretrained multimodal LMs, such as PaliGemma [3], Pixtral [5], Emu3 [6], Llama 3.2 [7], and 
Llava 1.5 [23], have demonstrated capabilities in text-image understanding and generation. 
However, the potential of these models in vector-based graphic generation has not been fully 
explored. This research aims to fine-tune Llava 1.5 [23] and similar models to evaluate their 
ability to generate SVGs directly or facilitate the conversion process. ​
To support fine-tuning of vision-language models, an initial dataset of 2.5k high-quality tuples - 
each consisting of a raster image, its corresponding SVG representation, and a detailed text 
description - was created. This dataset served as the foundation for scaling to a much larger 
collection. Although the original target was 100k tuples, the dataset was ultimately expanded to 
1.8 million high-quality tuples. 

Motivation: Current Image-To-SVG State-of-The-Art Using ChatGPT and Claude​
As you can see in Figure 1, the current state of the art in image-to-SVG in both ChatGPT [13] 
and Claude [14] is not good, resulting in very abstract, even absurd looking SVG images. This 
gives motivation to our work, as there seems to be a large gap for improvement.  

 

Figure 1: Current State-Of-The-Art using ChatGPT and Claude (raster image to SVG) 

4 



 

2.​Related Work 

Multimodal models like StarVector [1] have made notable advancements in image-to-SVG 
conversion. StarVector integrates a CLIP image encoder with StarCoder, a code generation 
model, to convert images into visual tokens and generate SVG code through next-token 
prediction. StarVector, trained on the SVG-Stack dataset consisting of over 2 million real-world 
SVG examples (see Figure 3), is designed to capture the nuances of SVG generation. However, 
its reliance on simplified SVG datasets can restrict its ability to produce highly detailed or 
intricate designs. Additionally, the tokenization limitations within its architecture may affect 
performance when handling more complex image representations. 

 

Figure 2: StarVector pipeline (taken from StarVector paper [1]) 

 

In contrast, our research aims to advance SVG generation by leveraging a high-resolution SVG 
dataset that we specifically curated. This dataset contains intricate examples, allowing a more 
detailed assessment of SVG quality (Figure 6 shows examples from our initial small dataset). By 
fine-tuning a multimodal model on this data, we aim to improve its ability to generate complex, 
high-quality SVGs, surpassing models such as GPT-4V and Claude 3, while addressing 
limitations of traditional SVG generation methods and API-based approaches.​
 

 

Figure 3: Dataset examples used in StarVector paper and comparison to VTracer [20] and GPT4-v [13]  
(taken from StarVector paper [1]) 

5 



 

During dataset creation, we ensured that images were sufficiently complex to reflect realistic 
scenarios, rendered at appropriate resolution, and converted into SVGs that preserved key 
geometric and structural details. We initially constrained SVG descriptions to a maximum of 8k 
tokens to fit large language models, later reducing this limit to 4k tokens for practical training. 
Converting raster images to SVGs is a critical step in this process. Prior work - including 
StrokeNUWA [2], StarVector [1], and research on SVG compression [10] - highlighted the 
benefits of vectorization for compact and high-quality representations, but these approaches 
often struggled to consistently produce SVGs suitable for effective fine-tuning. 

During the course of our work, the paper OmniSVG [24] was published, presenting a unified 
approach for multimodal SVG generation, including Text-to-SVG, Image-to-SVG, and 
character-reference SVG tasks. OmniSVG discretizes SVG commands and coordinates into 
tokens, effectively separating the structural logic of vector graphics (e.g., commands and 
hierarchy) from low-level geometric details such as exact coordinates. This strategy allows 
vision-language models to better capture the underlying structure of SVGs rather than 
memorizing pixel-level or coordinate-specific information, providing valuable guidance as we 
approach the fine-tuning stage of our multimodal model. 

​
2.1 Attempts at Generating SVG Images that Did Not Work 

During the development of the SVG image generation pipeline, several methodologies were 
explored to improve the quality and structural precision of the resulting vector graphics. One of 
the early attempts relied on a multi-step process that combined image resizing, edge detection, 
clustering, and Bezier curve fitting. The workflow began by resizing each raster image to a 
consistent width (default 5000px) while preserving its aspect ratio. This normalization step 
ensured uniform behavior in downstream edge-detection operations. 

The resized image was then prepared for edge extraction by converting it to grayscale and 
applying a series of visual adjustments, including brightness, saturation, and contrast 
enhancement, as well as hue-shifting and sepia filtering when needed. Edge detection was 
performed using the Canny algorithm, producing a binary edge map where detected boundaries 
appeared as white contours on a black background. This representation served as the input for 
subsequent structural analysis. 

To group the detected edge points into meaningful shapes, the DBSCAN clustering algorithm [8] 
was used. DBSCAN was chosen due to its ability to identify arbitrarily shaped clusters and 
handle noise effectively - properties that are particularly useful when dealing with natural 
images. For each cluster, Bezier curve fitting was applied to approximate the contours with 
smooth mathematical curves. These curves were then converted into SVG path commands, 
forming the final vector representation. Example outputs of this approach are provided in 

6 



 

Figure-4. Despite producing visually interpretable results, the method introduced inaccuracies 
and structural artifacts, making it unsuitable for building a high-quality dataset at scale. 

In another approach, Pillow was used for image manipulation alongside edge-detection methods 
from scikit-image to generate a sketch-like representation of the raster images. In this pipeline, 
the Sobel filter was applied to extract intensity gradients, producing a grayscale edge image that 
resembled a hand-drawn sketch. This sketch was then passed to Potrace [11], a vectorization tool 
that converts bitmap outlines into smooth Bézier paths. While Potrace is effective for simple, 
high-contrast silhouettes, its output in this context lacked the structural fidelity required for 
detailed images. The resulting SVGs often contained oversimplified contours, missing internal 
boundaries, and irregular path shapes. Consequently, the quality produced by this method was 
insufficient for building a high-quality vector dataset. 

 

eps=4.00 eps= 4.67  eps= 5.11 eps=6.00 

number of GPT-4 
tokens: 19280 

number of GPT-4 
tokens: 16178 

number of GPT-4 tokens: 
1936 

number of GPT-4 tokens: 
1936 
  

Figure 4: The eps parameter in DBSCAN controls the maximum distance between two samples for them 
to be considered part of the same cluster. 

 

 

 

 

 

 

 

 

7 



 

3.​Our Method 
 

We first created a small, high-quality dataset of 2.5k examples, where each example included a 
raster image, its matching SVG version, and a clear text description. This initial set helped define 
the structure and quality we wanted and served as the foundation for creating a larger dataset of 
10k examples, which was ultimately scaled up to 1.8 million high quality image - SVG - text 
tuples.​
 

3.1 Creating an Initial Small Dataset 

We developed a pipeline integrating generative methods using OpenAI’s DALL·E API for image 
creation. Once a JPG image is generated, we convert it to SVG using the Potrace algorithm [11], 
which detects image edges and fits smooth curves, ensuring that both the structural integrity and 
descriptive capacity of the image are preserved. This approach allows us to produce diverse and 
complex images that can be effectively converted into scalable vector graphics. For generating 
the textual description of the images, we used GPT-4 Turbo, enhancing the dataset with rich, 
contextually accurate descriptions. By combining DALL·E for image generation with Potrace for 
SVG conversion, we have built a robust, high-quality SVG dataset that supports our project's 
goals. The process is detailed in Figure 5. 

​
 

 

Figure 5: Our pipeline for generating an initial dataset of 2,500 high-quality SVG images. More precisely, 
we generate tuples of (text, raster image, SVG), for every instance. 

 

8 



 

Here we present several examples of our pipeline: 

 

Figure 6. Several SVGs generated by our pipeline from Figure 3. All of these SVG images contain at 
most 8K tokens (after tokenization). As you can see, these images are of much higher quality than 
previous attempts, and also fit into a 8K-context of an LLM. The prompt used for generating the raster 
images before converting to SVG is: “A black silhouette of a {object} with well-defined main features 
that clearly outline the subject's overall shape. The silhouette shows high contrast between the sharp main 
contours and the bright white background.  The silhouette is very simple and lacks sharp edges and 
intricate details." where the objects in the figure are {zebra, motorcycle, ukulele, crown, elephant, 
bicycles, chess, and scissors} correspondingly.​
 

3.2 Scaling Up to Large Dataset (10k samples) 

To grow our dataset beyond the first 2.5k examples, we fine-tuned a Stable Diffusion model 
using DreamBooth [21]. We trained it on our small curated set of raster images, SVGs, and text 
descriptions so the model would learn the style we needed. Our goal was to generate raster 
images that convert easily into clean SVGs, so we focused on producing images with simple 
shapes, minimal details, and a plain white background. We used prompt engineering to push the 
model toward this minimal, high-contrast style. 

The next stage scaled this workflow up further - eventually reaching 1.8 million samples - using 
a stronger model called Flux [22]. 

 

 

 

9 



 

3.2.1 Stable Diffusion Fine-Tuning Using DreamBooth 

Stable Diffusion [12] is a text-to-image generative model based on the diffusion framework, 
where an image is created by gradually transforming random noise into a coherent visual output. 
The model learns this transformation by reversing a noise-adding process: it takes a noisy latent 
representation and denoises it step by step, guided by text embeddings that describe the desired 
scene. 

The architecture contains several key components: 

●​ Latent Space Representation:​
 Rather than generating images directly in pixel space, Stable Diffusion works in a 
compressed latent space using a Variational Autoencoder (VAE). This significantly 
reduces memory and computation cost while preserving visual detail.​
 

●​ Diffusion Process:​
 During training, the model observes a forward diffusion process that progressively adds 
noise to the latent image. It then learns the reverse process - removing noise over multiple 
steps to recover the image described by the prompt.​
 

●​ U-Net Backbone:​
 The denoising network is a U-Net, chosen for its ability to capture multi-scale features. It 
receives the noisy latent, a timestep, and the text embedding, and outputs a cleaner latent 
representation.​
 

●​ Text Conditioning:​
 Text prompts are encoded using a transformer-based text encoder. These embeddings 
guide the U-Net so the final image aligns semantically with the prompt.​
 

To adapt Stable Diffusion to our specific style - minimalist silhouettes, strong foreground - 
background separation, and fully white backgrounds - we finetuned the model using 
DreamBooth [21]. DreamBooth enables personalization: the model can internalize the visual 
characteristics of a small training set and reproduce them consistently during generation. In our 
case, this allowed Stable Diffusion to learn the clean icon-like structure required for efficient 
SVG vectorization. 

However, as noted in Guttenberg’s blog [26], diffusion models naturally gravitate toward 
mid-range brightness values. Their noise distribution makes it difficult to generate extremely 
bright or extremely dark regions, which causes problems when producing images with uniform 
white backgrounds - an essential requirement for low token SVGs. 

10 



 

Before applying any correction, the standard noise sampled during training is: 

 

 
 

 
To overcome this brightness limitation, we adopted offset noise, which shifts the noise 
distribution by adding a low-frequency bias. This encourages the model to produce brighter 
images and maintain large areas of uniform white: 
 

​

 
 

 
 
3.2.2 ​​The inference process of Stable Diffusion 
 

To expand our dataset from 2.5K to 10K high quality triplets, we ran a large-scale inference 
process using a Stable Diffusion model fine-tuned with DreamBoot [21]. To create diverse input 
prompts, we drew inspiration from two large captioning datasets: the COCO dataset, which 
contains everyday images paired with short human-written captions, and the Text-to-Image-2M 
dataset, which contains millions of image-text pairs collected for training generative models. We 
used only the textual descriptions from these datasets, mixing object and scene phrases to 
produce thousands of unique prompt candidates. However, many of these captions were too long 
or too complex - often filled with adjectives, background clutter, or scene details that made it 
difficult for Stable Diffusion to generate clean, simple silhouettes. 

To solve this, we used GPT-4 Turbo with a prompt-engineering approach. We provided the 
model with several examples showing how to turn a complex caption into a short, abstract, 
silhouette-friendly description. The model learned to simplify captions consistently and returned 
“NO” when a caption was unsuitable.  

 

11 



 

The exact prompt format we used was: 

 

 
 
After simplification, each processed caption was wrapped in a consistent style template to match 
the aesthetic learned during DreamBooth training-specifically: 
 

 

We then fed these prompts into our fine-tuned Stable Diffusion model. Because the model had 
learned minimalist shapes, strong foreground-background separation, and clean white 
backgrounds, it produced images that were generally easy to convert into SVGs. Each generated 
raster image was passed through our Potrace-based vectorization pipeline, after which we 
applied two filtering rules: (1) we removed SVGs that exceeded 4,000 tokens to maintain 
compactness, and (2) we kept only samples with sufficiently high CLIP similarity to their 
prompts. Images that passed both tests were used to improve the fine-tuning. The iterative 
process of the fine-tuning is shown in Figure 7. 

12 



 

 
Figure 7: Iterative Fine-Tuning Process of SD Dreambooth 

 

The final results were mixed. Many images were clean and structurally correct, converting 
smoothly into SVGs. (See Figure 8 – Good Inference Examples.) Others contained broken 
silhouettes, missing structure, or unusual artifacts. (See Figure 9 – Problematic Inference 
Examples.) These limitations suggested that DreamBooth-tuned Stable Diffusion was not strong 
enough for reliable large-scale silhouette generation, motivating our transition to a more capable 
model (Flux) for scaling from 10K to 1.8M samples. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

13 



 

3.3 Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples 

After building the initial 10K dataset with Stable Diffusion, we moved to a stronger model Flux 
[22], created by Black Forest Labs to scale our dataset to more than a million examples. Flux is a 
modern diffusion model built with a hybrid multimodal transformer architecture and scaled to 
12B parameters, making it far more capable than Stable Diffusion for producing structured, 
clean, and consistent images. 

We fine-tuned Flux using a lightweight LoRA [25] (weight 0.1). The LoRA did not change the 
style dramatically - it only encouraged slightly simpler shapes and more stable outlines. The real 
performance improvement came from two ingredients we kept from the SD stage: (1) simplified 
captions, and (2) a consistent silhouette-style wrapper prompt. 

For captioning, we reused the same simplified COCO and text-to-image-2M descriptions 
simplified by GPT-4 Turbo. These short captions helped Flux focus on the core object without 
adding unnecessary textures or backgrounds. We then wrapped every simplified caption inside a 
consistent SVG-friendly template:​
​

​
​
We also used a negative prompt to prevent the model from adding unwanted details, telling it to 
avoid: photorealistic, noise, texture, watercolor, gradients, film grain, shading. 

Using this setup, we generated approximately 1.8 million raster images with the FLUX.1-schnell 
model. Every image was then processed through Potrace [11], which produced SVGs with clean 
structure and controlled token counts. Only images whose SVGs met our quality constraints 
(e.g., low token count, clean silhouettes, proper shape structure) were kept. 

The final result is a large-scale dataset of about 1.8 million triplets - caption, raster image, and 
SVG. To our knowledge, this is one of the largest and most carefully curated datasets designed 
specifically for vector friendly image generation, SVG reasoning, and image-to-vector learning 
at scale. 

 

 

 

 

                             Figure 10: Examples of inference images generated by the fine-tuned FLUX model 

14 



 

4.​Fine-Tuning LLaVA for Image-to-SVG Generation 

4.1 Dataset Selection 

We initially considered using our large-scale FLUX [22] dataset, which contains 1.8M triplets of 
raster images, captions, and SVGs. However, many of the converted SVG sequences were longer 
than 4,000 tokens, exceeding the context window of the LLaVA [23] model we used. This caused 
truncation, preventing the model from seeing the full SVG and making fine-tuning ineffective. 
To address this, we used the OmniSVG [24] dataset, which contains illustrations and icons. We 
selected the icon subset, which contains simple, compact examples with short SVG sequences 
that fit within the model’s context window, allowing effective training for Image-to-SVG 
generation. 

4.2 LLaVA Architecture 

LLaVA [23] (Large Language and Vision Assistant) is a large multimodal model that integrates 
visual and textual information. It connects a pretrained vision encoder to a large language model 
via a trainable multimodal fusion layer, converting image features into tokens that the language 
model can process alongside text. The model is autoregressive, predicting one token at a time, 
and is instruction-tuned to follow structured prompts. This architecture enables LLaVA to 
generate structured outputs, such as SVG code, directly from images. 

4.3 Training Principles 

To adapt LLaVA-1.5-7b for Image-to-SVG generation, we employed several key strategies: 

●​ Gradient Accumulation:​
Due to limited GPU memory, we trained with a small batch size (1 sample)  but 
accumulated gradients over multiple steps before updating the weights. This simulates a 
larger effective batch size, stabilizing training without exceeding memory limits.​
 

●​ Multimodal Input with Captions:​
While the core task is Image-to-SVG, including textual captions during training improves 
model performance. Captions provide explicit guidance about the icon’s semantic 
content, helping the model generate accurate SVGs even in ambiguous or noisy images.​
In the training prompt, the image is represented by a special token that signals the model 
to use visual features from the input image, and the caption is included directly in the 
instruction text. This combination allows the model to align visual information with the 
intended semantic meaning of the icon. ​
Additionally, a fraction of samples are text-only (Text-to-SVG), which helps the model   
retain its instruction-following ability and prevents forgetting the Image-to-SVG task. 

15 



 

●​ LoRA-based Model Adaptation:​
Low-Rank [25] Adaptation (LoRA) was applied to the language and multimodal fusion 
layers while keeping the vision encoder frozen. This focuses training on the cross-modal 
mapping and SVG sequence generation, reducing computational cost.​
 

●​ Data Collation and Loss Masking:​
Sequences were padded within each batch, and loss was computed only on the generated 
SVG tokens. Prompt tokens were masked to prevent the model from learning the 
instruction text as part of the output.​
 

●​ Loss Function: We use autoregressive next-token prediction with cross-entropy loss, 
computed only on the SVG output tokens. Prompt and padding tokens are masked so the 
model learns to generate the SVG sequence rather than copying the instruction text.​
 

4.4 Instruction-Tuned Prompts 

The model was trained using structured prompts for the Image-to-SVG task: 

 

In this prompt, the image is provided through the model’s image input token, while the caption 
appears in the instruction text. This setup allows the model to generate SVG code that reflects 
both the visual structure and the intended semantic meaning of the icon. 

●​ Output Stabilization: Captions provide clear semantic instructions, helping the model 
generate accurate SVGs even when the input image contains noise.​
 

●​ Better Generalization: Textual descriptions allow the model to learn broader mappings 
between high-level concepts and SVG structures, improving its ability to handle diverse 
content.​
 

●​ Task Retention: Including text-only samples prevents the model from forgetting the core 
Image-to-SVG task, ensuring robust SVG generation even when images are partially 
missing or degraded.​
 

16 



 

Training a vision-language model (VLM) on images alone reduces the task to a direct 
pixel-to-SVG mapping, making it harder for the model to capture the intended semantics and 
increasing sensitivity to noise. Adding text provides an additional layer of conceptual 
understanding, guiding the model toward producing SVGs that reflect the intended content more 
faithfully. 

 

 

Figure 11: The training loss curve of the Llava-1.5-7b 

 

 

17 



 

5.​Experiments  
To evaluate the performance of our Image-to-SVG generation model, we conducted both 
quantitative and qualitative experiments, comparing our model against prior approaches and 
assessing improvements after fine-tuning. 

 

5.1 Qualitative Evaluation 

Qualitative assessment involved visually inspecting the generated SVGs on known datasets. The 
evaluation focused on preservation of image details, aesthetic appeal, and overall fidelity. Figure 
12 illustrates examples of high-quality SVGs generated by our pipeline. 

 

 

Figure 12: Examples of image to SVG results of the finetuned Llava-1.5-7b 

​
5.2 Quantitative Evaluation 

For rigorous quantitative evaluation, we employed a combination of raster-based and 
vector-based metrics, some of which were adopted from prior work on StarVector [1].  

In our experiments, we evaluated every predicted SVG by comparing it to its corresponding 
ground-truth SVG across a wide suite of metrics. All SVG outputs - both ground truth and model 
prediction - were first rasterized at a fixed resolution to enable consistent pixel-based 
measurements. For each sample, we computed classical metrics such as MSE, SSIM, PSNR, and 
IoU, as well as perceptual and semantic metrics including LPIPS and CLIP similarity. In 

18 



 

addition, to capture geometric fidelity at the vector level, we computed the Chamfer Distance 
directly on the SVG path coordinates. These metrics were averaged across the entire evaluation 
set, providing a comprehensive quantitative view of reconstruction quality, perceptual similarity, 
and vector-shape accuracy. 

Metrics: 

1.​ Mean Squared Error (MSE)​
MSE measures the average squared difference between corresponding pixel intensities in 

the generated image  and the reference image ​: 𝐼
𝑖

𝐼
𝑖
'

 𝑀𝑆𝐸 =  1
𝑛

𝑖=1

𝑛

∑ (𝐼
𝑖

−  𝐼
𝑖
')

2

           Lower MSE indicates better reconstruction fidelity. 

2.​ Structural Similarity Index (SSIM) [19] 

SSIM, evaluates perceptual similarity by comparing luminance, contrast, and structure: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2µ

𝑥
µ

𝑦
+𝐶

1
)(2σ

𝑥𝑦
+𝐶

2
)

(µ
𝑥
2+µ

𝑦
2+𝐶

1
)(σ

𝑥
2+σ

𝑦
2+𝐶

2
)

where ​ and are the means of pixel intensities in images x and y,  and ​ are the µ
𝑥

µ
𝑦

σ
𝑥
2 σ

𝑦
2

variances, ​ is the covariance, and ​ and ​ are constants to stabilize the division. σ
𝑥𝑦

𝐶
1

𝐶
2

SSIM, introduced in [19], captures perceptual similarity by comparing patterns of pixel 
intensity, luminance, and contrast in the rasterized SVGs and aligns closely with human 
visual perception. 

3.​ Peak Signal-to-Noise Ratio (PSNR) [17] ​
PSNR quantifies pixel-level fidelity, capturing differences in intensity values: higher 
PSNR indicates clearer, less noisy outputs.​
 

4.​ Intersection over Union (IoU) [18]​
 IoU measures spatial alignment between rasterized generated SVGs and ground truth: 

 𝐼𝑜𝑈 = 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

|| || 

where A and B are the sets of pixels in the reference and generated images. Higher IoU 
reflects better shape alignment. 

19 



 

5.​ Learned Perceptual Image Patch Similarity (LPIPS) ​
LPIPS assesses perceptual similarity using deep features, providing additional insight 
into visual quality beyond pixel-level metrics. Lower LPIPS indicates higher perceptual 
similarity.​
 

6.​ CLIP Similarity​
We also compute the cosine similarity between image and SVG embeddings using CLIP, 
evaluating semantic alignment between input images and generated SVGs.​
 

7.​ Chamfer Distance (CD) [16]​
 CD is a vector-based metric that measures similarity between point sets representing the 
reference and generated SVG shapes. Lower CD indicates better geometric fidelity 
without rasterization 

 

 

Figure 13 

Results Analysis 

The table, described in Figure 13, reports the average quantitative evaluation metrics for our 
Image-to-SVG generation model, both before and after fine-tuning. These metrics capture 
different aspects of fidelity, from pixel-level accuracy to vector-based geometric similarity. 

After fine-tuning, all metrics show substantial improvements, reflecting the model’s 
enhanced ability to generate SVGs that faithfully represent the input images. In particular: 

20 



 

●​ Mean Squared Error (MSE) decreased from 0.0895 to 0.0378, indicating a substantial 
reduction in pixel-level differences between the rasterized SVGs and the original images.​
 

●​ Structural Similarity Index (SSIM) increased from 0.7361 to 0.7587, suggesting better 
preservation of perceptual structures such as shape, contrast, and luminance in the 
generated SVGs.​
 

●​ Peak Signal-to-Noise Ratio (PSNR) improved from 49.54 to 59.06, highlighting clearer 
and more accurate reconstruction at the pixel level.​
 

●​ Learned Perceptual Image Patch Similarity (LPIPS) dropped from 0.4066 to 0.2240, 
confirming that the generated images are perceptually closer to the originals, according to 
human-aligned features.​
 

●​ CLIP Similarity rose from 0.8688 to 0.9494, reflecting that the semantic content of the 
generated SVGs aligns more closely with the input images.​
 

●​ Chamfer Distance decreased from 0.1798 to 0.0969, indicating that the geometric 
outlines of the vector shapes match the original shapes more precisely.​
 

●​ Intersection over Union (IoU) shows some improvement (0.0297 to 0.1285) compared 
to prior results, but remains relatively low overall. This is expected because the dataset 
primarily contains icons with very sparse and compact shapes. In such cases, even minor 
spatial shifts in the generated SVGs can lead to large reductions in pixel-wise overlap, 
while perceptual and geometric similarity remains high.  

 

 

 

 

 

 

 

 

 

21 



 

6.​Conclusion and Future Work 
In this work, we set out to build a large dataset of (caption, raster image, SVG) triplets for 
training and evaluating future vision - language models on image-to-SVG tasks. We began with a 
small curated set and expanded it through iterative generation, filtering, and refinement (using 
SD dreambooth). After reaching 10K samples, we scaled up using the Flux model and ultimately 
produced approximately 1.8M triplets, each converted to SVG through our vectorization 
pipeline. 

Looking ahead, there are additional techniques from recent research that we plan to explore. The 
OmniSVG paper proposes several strategies for simplifying and normalizing SVGs so they are 
easier for models to learn. For example, they use tools like picosvg to remove extra structural 
elements and rewrite shapes in a cleaner form - turning what might otherwise be many line 
segments into a structured command such as: 

 

They also simplify SVGs into small sets of atomic path commands and remove elements like 
<g> (group) and transform. Incorporating or adapting some of these ideas may help reduce noise, 
unify structure, or make SVG sequences more model-friendly. 

Future work will focus on evaluating these simplification and normalization methods within our 
pipeline, as well as exploring iterative SVG generation - splitting complex scenes into smaller 
parts instead of producing a single long sequence. We also plan to test techniques that may 
reduce inference cost, such as multi-token prediction or KV-cache compression, especially 
important for long SVG token sequences. As models continue to improve, there is room to 
investigate stronger diffusion models or hybrid approaches to further enhance SVG quality and 
token efficiency. 

Overall, while we observed clear improvements as our dataset grew, the work also highlights 
current limitations, such as long SVG sequences, context-window constraints, and variability 
across samples. Producing SVGs directly from text or images is feasible but still challenging, 
and there is substantial room for refinement. Our dataset and pipeline provide a foundation for 
advancing vector-aware vision-language modeling, and we aim to continue improving both the 
SVG representations and the models that learn from them. 

 

 

22 



 

References 

 
[1]​ Juan A. Rodriguez et al. StarVector: Generating Scalable Vector Graphics Code from 

Images. 2023. arXiv: 2312 . 11556 [cs.CV]. url: https://arxiv.org/abs/2312.11556 
 

[2]​ Zecheng Tang et al. “StrokeNUWA - Tokenizing Strokes for Vector Graphic Synthesis”. 
In: Forty-first International Conference on Machine Learning, ICML 2024, Vienna, 
Austria, July 21-27, 2024. 2024. url: https://openreview.net/forum?id=eVlx8DaG9h  
 

[3]​ Lucas Beyer et al. PaliGemma: A versatile 3B VLM for transfer. 2024. arXiv: 
2407.07726 [cs.CV]. url: https://arxiv.org/abs/2407.07726  
 

[4]​ Google AI. (n.d.). Fine-tuning PaliGemma. Retrieved October 27, 2024, from 
https://ai.google.dev/gemma/docs/paligemma/fine-tuning-paligemma 
 

[5]​ Pravesh Agrawal et al. Pixtral 12B. 2024. arXiv: 2410.07073 [cs.CV]. url: 
https://arxiv.org/abs/2410.07073 

 
[6]​ Xinlong Wang et al. Emu3: Next-Token Prediction is All You Need. 2024. arXiv: 

2409.18869 [cs.CV]. url: https://arxiv.org/abs/2409.18869 
 

[7]​ Meta AI. (2024). LLaMA 3.2. Retrieved October 27, 2024, from  
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/ 

 
[8]​ Martin Ester et al. “A density-based algorithm for discovering clusters in 

1.​ large spatial databases with noise”. In: Proceedings of the Second Inter- 
2.​ national Conference on Knowledge Discovery and Data Mining. KDD’96. 
3.​ Portland, Oregon: AAAI Press, 1996.  
4.​ url: https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pd 

 
[9]​ Francis Bach and Michael Jordan. “Learning Spectral Clustering”. In: Advances in 

Neural Information Processing Systems (NeurIPS). Ed. by S. Thrun, L. Saul, and B. 
Sch¨olkopf. Vol. 16. MIT Press, 2003. url: 
https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95
b0ae60-Paper.pdf  
 

[10]​ S.R. Ginn. “On the Compression of SVG Images”. Master’s thesis. Faculty of 
Science (FNWI), University of Amsterdam, 2017. url: 
https://scripties.uba.uva.nl/search?id=record_25356  

23 

https://arxiv.org/abs/2312.11556
https://openreview.net/forum?id=eVlx8DaG9h
https://arxiv.org/abs/2407.07726
https://ai.google.dev/gemma/docs/paligemma/fine-tuning-paligemma
https://ai.google.dev/gemma/docs/paligemma/fine-tuning-paligemma
https://arxiv.org/abs/2410.07073
https://arxiv.org/abs/2409.18869
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://scripties.uba.uva.nl/search?id=record_25356


 

[11]​      Peter Selinger. “Potrace : a polygon-based tracing algorithm”. In: 2003. 
1.​ url: https://api.semanticscholar.org/CorpusID:1419652 

 
[12]​ Patrick Esser et al. Scaling Rectified Flow Transformers for High-Resolution 

1.​ Image Synthesis. 2024. arXiv: 2403 . 03206 [cs.CV]. url: 
https://arxiv.org/abs/2403.03206 

 
[13]​ OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL]. url: 

https://arxiv.org/abs/2303.08774 
 

[14]​ The Claude 3 Model Family: Opus, Sonnet, Haiku”. In: url: 
https://api.semanticscholar.org/CorpusID:268232499 
 

[15]​ Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent 
Adversarial Networks. 2020. arXiv: 1703.10593 [cs.CV]. url: 
https://arxiv.org/abs/1703.10593 
 

 
[16]​ Haoqiang Fan, Hao Su, and Leonidas Guibas. A Point Set Generation Network for 3D 

Object Reconstruction from a Single Image. 2016. arXiv:1612.00603 [cs.CV]. url: 
https://arxiv.org/abs/1612.00603 

 

[17]​ Alain Hor´e and Djemel Ziou. “Image Quality Metrics: PSNR vs. SSIM”. In: 2010 
20th International Conference on Pattern Recognition. 2010, pp. 2366–2369. doi: 
10.1109/ICPR.2010.579. url:  https://ieeexplore.ieee.org/document/5596999 

 

[18]​ Hamid Rezatofighi et al. Generalized Intersection over Union: A Metric and A Loss 
for Bounding Box Regression. 2019. arXiv: 1902.09630 [cs.CV]. url: 
https://arxiv.org/abs/1902.09630 

 

[19]​ Zhou Wang et al. “Image quality assessment: from error visibility to structural 
similarity”. In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612. doi: 
10.1109/TIP.2003.819861. url: https://ieeexplore.ieee.org/document/1284395 

 

24 

https://api.semanticscholar.org/CorpusID:1419652
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2303.08774
http://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1612.00603
https://ieeexplore.ieee.org/document/5596999
https://arxiv.org/abs/1902.09630
https://ieeexplore.ieee.org/document/1284395


 

[20]​ Yao Liu et al. Vtracer: A Deep Learning-based Tool for Vectorizing Raster Images 
into Scalable Vector Graphics (SVGs). Accessed: 2024-11-09. 2024. url: 
https://github.com/facebookresearch/VTracer 

 

[21]​ Nataniel Ruiz et al. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for 
Subject-Driven Generation. 2023. arXiv: 2208.12242 [cs.CV]. url: 
https://arxiv.org/abs/2208.12242 

[22]​ Labs, B. F., Batifol, S., Blattmann, A., Boesel, F., Consul, S., Diagne, C., … Smith, L. 
(2025). FLUX.1 Kontext: Flow matching for in-context image generation and editing in 
latent space. arXiv. https://arxiv.org/abs/2506.15742 
 

[23]​ Li, Jing Yang, Jie Yu, Xiyao Wang, Bin Qin, Yumeng Wang, Zizhen Yan, Ziyong 
Feng, Ziwei Liu, Bo Li, and Jiankang Deng. 2025. LLaVA-OneVision-1.5: Fully Open 
Framework for Democratized Multimodal Training. arXiv:2509.23661 [cs.CV] 
https://arxiv.org/abs/2509.23661 
 

[24]​ Yang, Y., Cheng, W., Chen, S., Zeng, X., Yin, F., Zhang, J., Wang, L., Yu, G., Ma, X., 
& Jiang, Y. (2025). OmniSVG: A Unified Scalable Vector Graphics Generation Model. 
arXiv. https://arxiv.org/abs/2504.06263 
 

[25]​ Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. 
(2021). LoRA: Low-Rank Adaptation of Large Language Models. arXiv. 
https://arxiv.org/abs/2106.09685 
 

[26]​ Nicholas Guttenberg. 2023. Diffusion Models with Offset Noise.  
https://www.crosslabs.org/blog/diffusion-with-offset-noise 
 

[27]​ Shachar Levy, Maayan Mashhadi, Sarel Cohen, Ohad Rubin. The 18th 
ACM International Systems and Storage Conference (SYSTOR 2025). ​
VisVec: A Milestone Towards Compressing Images by Converting Them 
to SVG using LLMs. 

 

25 

https://github.com/facebookresearch/VTracer
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2506.15742
http://cs.cv
https://arxiv.org/abs/2509.23661
https://arxiv.org/abs/2504.06263
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://www.crosslabs.org/blog/diffusion-with-offset-noise

	3.​Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples .................. 14 
	3.2.1 Stable Diffusion Fine-Tuning Using DreamBooth 
	 
	 
	 
	 
	3.3 Flux Fine-Tuning and Large-Scale Expansion to 1.8 Million Samples 
	4.1 Dataset Selection 
	4.2 LLaVA Architecture 
	4.3 Training Principles 
	4.4 Instruction-Tuned Prompts 
	5.1 Qualitative Evaluation 
	​5.2 Quantitative Evaluation 
	For rigorous quantitative evaluation, we employed a combination of raster-based and vector-based metrics, some of which were adopted from prior work on StarVector [1].  
	In our experiments, we evaluated every predicted SVG by comparing it to its corresponding ground-truth SVG across a wide suite of metrics. All SVG outputs - both ground truth and model prediction - were first rasterized at a fixed resolution to enable consistent pixel-based measurements. For each sample, we computed classical metrics such as MSE, SSIM, PSNR, and IoU, as well as perceptual and semantic metrics including LPIPS and CLIP similarity. In addition, to capture geometric fidelity at the vector level, we computed the Chamfer Distance directly on the SVG path coordinates. These metrics were averaged across the entire evaluation set, providing a comprehensive quantitative view of reconstruction quality, perceptual similarity, and vector-shape accuracy. 
	Metrics: 

	Results Analysis 


