26 | Ido Schaefer, Hillel Tal-Ezer and Ronnie Kosloff. Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems, J. Comput. Phys., volume 343, pages 368–413, 2017. |
25 | Hillel Tal-Ezer. EvArnoldi: A New Algorithm for Large-Scale Eigenvalue Problems, The Journal of Physical Chemistry A, volume 120, number 19, pages 3366–3371, March 25, 2016. |
24 | Hillel Tal-Ezer. Nonperiodic Trigonometric Polynomial Approximation, J. Sci. Comput., volume 60, number 2, pages 345–362, 2014. |
23 | Hillel Tal-Ezer, Ronnie Kosloff and Ido Schaefer. New, Highly Accurate Propagator for the Linear and Nonlinear Schrödinger Equation, J. Sci. Comput., volume 53, number 1, pages 211–221, 2012. |
22 | Dan Koslo, Reynam C. Pestana and Hillel Tal-Ezer. Acoustic and elastic numerical wave simulations by recursive spatial derivative operators, Geophysics, volume 75, pages 167–174, 2010. |
21 | Mamadou Ndong, Hillel Tal-Ezer, Ronnie Kosloff and Christiane P. Koch. A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians, J. Chem. Phys., volume 132, 2010. arxiv |
20 | Hillel Tal-Ezer and Eli Turkel. The Iterative Solver RISOLV with Application to the Exterior Helmholtz Problem, SIAM J. Sci. Comput., volume 32, number 1, pages 463–475, 2010. |
19 | Hillel Tal-Ezer, Ronnie Kosloff and Christiane P. Koch. A Chebychev propagator for inhomogeneous Schrodinger equations, J. Chem. Phys., volume 130, number 12, 2009. |
18 | Yaron Lipman, Daniel Cohen-Or, David Levin and Hillel Tal-Ezer. Parameterization-free projection for geometry reconstruction, ACM Trans. Graph., volume 26, number 3, pages 22, 2007. |
17 | Hillel Tal-Ezer. On Restart and Error Estimation for Krylov Approximation of w=f(A)v, SIAM J. Sci. Comput., volume 29, number 6, pages 2426–2441, 2007. |
16 |
Guy Ashkenazi, Ronnie Kosloff, Sanford Ruhman and Hillel Tal-Ezer.
Newtonian propagation methods applied to the photodissociation dynamics of |
15 | J. M. Carcione and H. Tal-Ezer. Viscoelastic Seismic modeling, in K. Helbig (eds.), Modeling the Earth for oil exploration, pages 471–479, Pergamon, 1994. |
14 | D. Kosloff and H. Tal-Ezer. A Modified Chebyshev Pseudospectral Method with O(N) Time Step Restriction, Journal of Comp. Phys., volume 104, number 2, pages 457–469, 1993. |
13 | M. Berman, R. Kosloff and H. Tal-Ezer. Solution of the Time-Dependent Liouville-von Neumann Equation: Dissipative Evolution, Journal Phys. A: Math. Gen., volume 25, pages 1283–1307, 1992. |
12 | H. Tal-Ezer, R. Kosloff and C. Cerjan. Low Order Polynomial Approximation of Propagator to the Time-Dependent Schrodinger Equation, Journal of Comp. Phys., volume 100, number 1, pages 179–187, 1992. |
11 | Hillel Tal-Ezer. High Degree Polynomial Interpolation in Newton Form, SIAM J. Sci. Comput., volume 12, number 3, pages 648–667, 1991. |
10 | H. Tal-Ezer, J. M. Carcione and D. Kosloff. An Accurate and Efficient Scheme for Wave Propagation in Linear Viscoelastic Media, Geophysics, volume 55, number 10, pages 1366–1379, 1990. |
9 | H. Tal-Ezer. Polynomial Approximation of Functions of Matrices and Applications, Journal of Scientific Computing, volume 4, number 1, pages 25–60, March 1989. |
8 | H. Tal-Ezer. Spectral Methods in Time for Parabolic Equations, SIAM J. of Num. Anal., volume 26, number 1, February 1989. |
7 | H. Tal-Ezer, D. Kosloff and Z.Koren. An Accurate Scheme for Seismic Forward Modeling, Geophysical Prospecting, volume 35, pages 479–490, 1987. |
6 | R. Kosloff and H. Tal-Ezer. A Direct Relaxation Method for Calculating Eigenfunctions and Eigenvalues of the Schrodinger Equation on a Grid, Chemical Physics Letters, volume 127, number 3, pages 223–230, 1986. |
5 | H. Tal-Ezer. Spectral Methods in Time for Hyperbolic Equations, SIAM J. of Num. Anal., volume 23, number 1, pages 11–26, 1986. |
4 | H. Tal-Ezer. A Pseudospectral Legendre Method for Hyperbolic Equations with an Improved Stability Condition, J. of Comp. Phys., volume 7, number 1, November 1986. |
3 | H. Tal-Ezer and R. Kosloff. An Accurate New and Highly Efficient Scheme for Propagating the Time-Dependent Schrodinger Equation, J. Of Chem. Phys., pages 3967–3971, 1984. |
2 | A. Harten and H. Tal-Ezer. On a Fourth Order Accurate Implicit Finite Difference Scheme for Hyperbolic Conservation Laws: II. Five-Point Schemes, J. of Comp. Phys., volume 41, number 2, pages 329–356, 1981. |
1 | A. Harten and H. Tal-Ezer. On a Fourth Order Accurate Implicit Finite Difference Scheme for Hyperbolic Conservation laws: I. Nonstiff Strongly Dynamic Problems, Math. of Comp., volume 36, number 54, pages 353–373, 1981. |